604 research outputs found

    Toward automated evaluation of interactive segmentation

    Get PDF
    We previously described a system for evaluating interactive segmentation by means of user experiments (McGuinness and O’Connor, 2010). This method, while effective, is time-consuming and labor-intensive. This paper aims to make evaluation more practicable by investigating if it is feasible to automate user interactions. To this end, we propose a general algorithm for driving the segmentation that uses the ground truth and current segmentation error to automatically simulate user interactions. We investigate four strategies for selecting which pixels will form the next interaction. The first of these is a simple, deterministic strategy; the remaining three strategies are probabilistic, and focus on more realistically approximating a real user. We evaluate four interactive segmentation algorithms using these strategies, and compare the results with our previous user experiment-based evaluation. The results show that automated evaluation is both feasible and useful

    S3^3FD: Single Shot Scale-invariant Face Detector

    Full text link
    This paper presents a real-time face detector, named Single Shot Scale-invariant Face Detector (S3^3FD), which performs superiorly on various scales of faces with a single deep neural network, especially for small faces. Specifically, we try to solve the common problem that anchor-based detectors deteriorate dramatically as the objects become smaller. We make contributions in the following three aspects: 1) proposing a scale-equitable face detection framework to handle different scales of faces well. We tile anchors on a wide range of layers to ensure that all scales of faces have enough features for detection. Besides, we design anchor scales based on the effective receptive field and a proposed equal proportion interval principle; 2) improving the recall rate of small faces by a scale compensation anchor matching strategy; 3) reducing the false positive rate of small faces via a max-out background label. As a consequence, our method achieves state-of-the-art detection performance on all the common face detection benchmarks, including the AFW, PASCAL face, FDDB and WIDER FACE datasets, and can run at 36 FPS on a Nvidia Titan X (Pascal) for VGA-resolution images.Comment: Accepted by ICCV 2017 + its supplementary materials; Updated the latest results on WIDER FAC

    Automatic 2d image segmentation using tissue-like p system

    Get PDF
    This paper uses P-Lingua, a standard programming language that is designed specifically for P systems, to automatically simulate the region-based segmentation of 2D images. P-Lingua, which is based on membrane computing, links to Java Netbeans using the PLinguaCore4 Java library to automatically codify the pixels of the input image as long as automatically draw the output segmented image. Many methods have been suggested previously and used for artificial image segmentation, but to the best of our knowledge, none of those techniques were automatic, where the image was codified manually and the visualization of the output image was done manually in the tissue simulator which takes time and effort, especially when dealing with large images in the system. Two types of pixel adjacency have been utilized in this paper, namely; 4-adjacency and 8-adjacency. The jacquard index method has been used to measure the accuracy of the segmentation. The results of the proposed method demonstrated that beside its ability to automatically segmenting 2D images with arbitrary sizes, it is more efficient and faster than the tissue simulator tool, since the latter needs the input image to be codified manually pixel by pixel which makes it impractical for real-world applications

    Workflow for reducing semantic segmentation annotation time

    Get PDF
    Abstract. Semantic segmentation is a challenging task within the field of pattern recognition from digital images. Current semantic segmentation methods that are based on neural networks show great promise in accurate pixel-level classification, but the methods seem to be limited at least to some extent by the availability of accurate training data. Semantic segmentation training data is typically curated by humans, but the task is rather slow and tedious even for humans. While humans are fast at checking whether a segmentation is accurate or not, creating segmentations is rather slow as the human visual system becomes limited by physical interfaces such as hand coordination for drawing segmentations by hand. This thesis evaluates a workflow that aims to reduce the need for drawing segmentations by hand to create an accurate set of training data. A publicly available dataset is used as the starting-point for the annotation process, and four different evaluation sets are used to evaluate the introduced annotation workflow in labour efficiency and annotation accuracy. Evaluation of the results indicates that the workflow can produce annotations that are comparable to manually corrected annotations in accuracy while requiring significantly less manual labour to produce annotations.Työnkulku semanttisen segmentoinnin annotointiajan vähentämiseen. Tiivistelmä. Semanttinen segmentointi on haastava osa-alue hahmontunnistusta digitaalisista kuvista. Tämänhetkiset semanttiset segmentaatiomenetelmät, jotka perustuvat neuroverkkoihin, osoittavat suurta potentiaalia tarkassa pikselitason luokittelussa, mutta ovat ainakin osittain tarkan koulutusdatan saatavuuden rajoittamia. Semanttisen segmentaation koulutusdata on tyypillisesti täysin ihmisten annotoimaa, mutta segmentaatioiden annotointi on hidasta ja pitkäveteistä. Vaikka ihmiset ovat nopeita tarkistamaan ovatko annotaatiot tarkkoja, niiden luonti on hidasta, koska ihmisen visuaalisen järjestelmän nopeuden ja tarkkuuden rajoittavaksi tekijäksi lisätään fyysinen rajapinta, kuten silmä-käsi-koordinaatio piirtäessä segmentaatioita käsin. Tämä opinnäytetyö arvioi kokonaisvaltaisen semanttisten segmentaatioiden annotointitavan, joka pyrkii vähentämään käsin piirtämisen tarvetta tarkan koulutusdatan luomiseksi. Julkisesti saatavilla olevaa datajoukkoa käytetään annotoinnin lähtökohtana, ja neljää erilaista evaluointijoukkoa käytetään esitetyn annotointitavan työtehokkuuden sekä annotaatiotarkkuuden arviointiin. Evaluaatiotulokset osoittavat, että esitetty tapa kykenee tuottamaan annotaatioita jotka ovat yhtä tarkkoja kuin käsin korjatut annotaatiot samalla merkittävästi vähentäen käsin tehtävän työn määrää

    Membrane Computing for Real Medical Image Segmentation

    Get PDF
    In this paper, membrane-based computing image segmentation, both region-based and edge-based, is proposed for medical images that involve two types of neighborhood relations between pixels. These neighborhood relations—namely, 4-adjacency and 8-adjacency of a membrane computing approach—construct a family of tissue-like P systems for segmenting actual 2D medical images in a constant number of steps; the two types of adjacency were compared using different hardware platforms. The process involves the generation of membrane-based segmentation rules for 2D medical images. The rules are written in the P-Lingua format and appended to the input image for visualization. The findings show that the neighborhood relations between pixels of 8-adjacency give better results compared with the 4-adjacency neighborhood relations, because the 8-adjacency considers the eight pixels around the center pixel, which reduces the required communication rules to obtain the final segmentation results. The experimental results proved that the proposed approach has superior results in terms of the number of computational steps and processing time. To the best of our knowledge, this is the first time an evaluation procedure is conducted to evaluate the efficiency of real image segmentations using membrane computing

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    Cotutela con il Dipartimento di Biotecnologie e Scienze della Vita, Universiità degli Studi dell'Insubria.openThis Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ”Circolo Fondazione Macchi”, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brain’s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that offers, in addition to all the functionality specifically described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient.openInformaticaPedoia, ValentinaPedoia, Valentin
    corecore