19 research outputs found

    JPSS-1 VIIRS Radiometric Characterization and Calibration Based on Pre-Launch Testing

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument has 22 spectral bands covering the spectrum between 0.4 and 12.6 m. It is a cross-track scanning radiometer capable of providing global measurements twice daily, through observations at two spatial resolutions, 375 m and 750 m at nadir for the imaging and moderate bands, respectively. This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the government independent team to generate the at-launch baseline radiometric performance and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), radiance dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, spectral performance, response-vs-scan (RVS), and scattered light response. A set of performance metrics generated during the pre-launch testing program will be compared to both the VIIRS sensor specification and the SNPP VIIRS pre-launch performance

    MODIS and VIIRS On-Orbit Calibration and Characterization Using Observations from Spacecraft Pitch Maneuvers

    Get PDF
    Two MODIS instruments (Terra and Aqua) and two VIIRS instruments (S-NPP and JPSS-1) are currently operated inspace, continuously making global earth observations in the spectral range from visible (VIS) to long-wave infrared(LWIR). These observations have enabled a broad range of environmental data records to be generated and distributed insupport of both operational and scientific community. Despite extensive pre-launch calibration and characterizationperformed for both MODIS and VIIRS instruments and routine on-orbit calibration activities carried out using their onboardcalibrators (OBC), various spacecraft maneuvers have also been designed and implemented to further enhance thesensor on-orbit calibration and data quality. This paper focuses on the use of observations made during spacecraft pitchmaneuvers of MODIS and VIIRS in support of their on-orbit characterization of thermal emissive bands (TEB) responseversus scan-angle (RVS). In the case of Terra MODIS, lunar observations made from instrument nadir view duringspacecraft pitch maneuvers are used to compare with that made regularly through instrument space view (SV) port toevaluate on-orbit changes in RVS and band-to-band registration (BBR) for the reflective solar bands (RSB). In additionto results derived from spacecraft pitch maneuvers performed for MODIS and VIIRS, discussion is provided on theadvantages, challenges, and lessons for future considerations and improvements

    Results from the Deep-Convective Clouds (DCC) Based Response Versus Scan-Angle (RVS) Characterization for the MODIS Reflective Solar Bands

    Get PDF
    The Terra and Aqua MODIS scan mirror reflectance is a function of the angle of incidence (AOI) and was characterized prior to launch by the instrument vendor. The relative change of the prelaunch response versus scan-angle (RVS) is tracked and linearly scaled on-orbit using observations at two AOIs of 11.2deg and 50.2deg corresponding to the moon view and solar diffuser, respectively. As the missions continue to operate well beyond their design life of 6 years, the assumption of linear scaling between the two AOIs is known to be inadequate in accurately characterizing the RVS, particularly at short wavelengths. Consequently, an enhanced approach of supplementing the on-board measurements with response trends from desert pseudo-invariant calibration sites (PICS) was formulated in MODIS Collection 6 (C6). An underlying assumption for the continued effectiveness of this approach is the long-term (multi-year) and short-term (month-to-month) stability of the PICS. Previous work has shown that the deep convective clouds (DCC) can also be used to monitor the on-orbit RVS performance with less trend uncertainties than desert sites. In this paper, the raw sensor response to the DCC is used to characterize the on-orbit RVS on a band and mirror side basis. These DCC-based RVS results are compared with the C6 PICS-based RVS, showing an agreement within 2% observed in most cases. The pros and cons of using a DCC-based RVS approach are also discussed in this paper. Although this reaffirms the efficacy of the C6 PICS-based RVS, the DCC-based RVS approach presents itself as an effective alternative for future considerations. Potential applications of this approach to other instruments such as SNPP and JPSS VIIRS are also discussed

    Determination of the NOAA-20 VIIRS TEB RVS from Emissive Radiation Measurements During the Pitch Maneuver

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key sensor carried on the newly launched (November 18, 2017) Joint Polar Satellite System-1 (JPSS-1), now transitioned to NOAA-20, and the Suomi National Polar-orbiting Partnership (SNPP) satellite. The two VIIRS sensors are nearly identical in design. Its on-board calibration components include a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. These on-board calibrators are located at fixed scan angles. The VIIRS response versus scan angle (RVS) was characterized prelaunch in lab ambient conditions and is currently used to calibrate the on-orbit response for all scan angles relative to the calibrator's scan angle. A spacecraft level pitch maneuver was scheduled during the initial intensive Cal/Val testing for both the NOAA-20 and SNPP. The pitch maneuver provided a rare opportunity for VIIRS to make observations of deep space over the entire scan angle range, which can be used to characterize the TEB RVS. This study provides our analysis of the NOAA-20 pitch maneuver data and assessment of the derived TEB RVS. A comparison between the RVS determined by the pitch maneuver observations and prelaunch lab measurements is conducted for each band, detector, and mirror side of the half angle mirror

    Initial Assessment of Radiometric Performance of N20 VIIRS Reflective Solar Bands Using Vicarious Approaches

    Get PDF
    The newly launched (November 18, 2017) polar-orbiting satellite of the Joint Polar Satellite System (JPSS-1), now transitioned to NOAA-20, is the follow-on mission to the SNPP (Suomi National Polar-orbiting Partnership) satellite, launched six years ago. NOAA-20 leads SNPP by a half orbit or about 50 minutes. The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key sensor onboard both NOAA-20 and SNPP spacecraft with nearly identical band spectral responses. Similar to the heritage sensor MODIS, VIIRS has on-board calibration components including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) as background reference for calibration. This study provides an initial assessment of calibration of the NOAA-20 VIIRS reflective solar bands (RSB) by inter-comparison with measurements from SNPP VIIRS using various vicarious approaches. The first approach is based on a double difference method using observations from simultaneous nadir overpasses (SNO) with Aqua MODIS. The second is from the collected reflectances over the widely used Liby-4 desert site from 16-day repeatable orbits so each data point has the same viewing geometry relative to the site. The third approach is to use the frequent overpasses over the Dome C snow site. Results of this study provide useful information on NOAA-20 VIIRS post-launch calibration assessment and preliminary analysis of its calibration stability and consistency for the first 6 month

    MODIS and VIIRS Lunar Observations and Applications

    Get PDF
    Terra and Aqua MODIS have successfully operated for more than 13 and 11 years since their launch in 1999 and 2002, respectively. The VIIRS instrument on-board the S-NPP launched in 2011 has also operated for nearly 2 years. Both MODIS and VIIRS make observations in the reflective solar and thermal emissive regions and their on-orbit calibration and characterization are provided by a set of on-board calibrators (OBC). In addition, lunar observations have been made on a regular basis to support sensor on-orbit calibration. This paper provides a brief overview of MODIS and VIIRS instrument on-orbit calibration and characterization activities. It describes the approaches and strategies developed to schedule and perform on-orbit lunar observations. Specific applications of MODIS and VIIRS lunar observations discussed in this paper include radiometric calibration stability monitoring and performance assessment of sensor spatial characterization. Results derived from lunar observations, such as sensor response (or gain) trending and band-to-band registration, are compared with that derived from sensor OBC. The methodologies and applications presented in this paper can also be applied to other earth observing sensors

    Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key environmental remote-sensing instruments onboard the Suomi National Polar-Orbiting Partnership spacecraft, which was successfully launched on October 28, 2011 from the Vandenberg Air Force Base, California. Following a series of spacecraft and sensor activation operations, the VIIRS nadir door was opened on November 21, 2011. The first VIIRS image acquired signifies a new generation of operational moderate resolution-imaging capabilities following the legacy of the advanced very high-resolution radiometer series on NOAA satellites and Terra and Aqua Moderate-Resolution Imaging Spectroradiometer for NASA's Earth Observing system. VIIRS provides significant enhancements to the operational environmental monitoring and numerical weather forecasting, with 22 imaging and radiometric bands covering wavelengths from 0.41 to 12.5 microns, providing the sensor data records for 23 environmental data records including aerosol, cloud properties, fire, albedo, snow and ice, vegetation, sea surface temperature, ocean color, and nigh-time visible-light-related applications. Preliminary results from the on-orbit verification in the postlaunch check-out and intensive calibration and validation have shown that VIIRS is performing well and producing high-quality images. This paper provides an overview of the onorbit performance of VIIRS, the calibration/validation (cal/val) activities and methodologies used. It presents an assessment of the sensor initial on-orbit calibration and performance based on the efforts from the VIIRS-SDR team. Known anomalies, issues, and future calibration efforts, including the long-term monitoring, and intercalibration are also discussed

    Using Lunar Observations to Assess Terra MODIS Thermal Emissive Bands Calibration

    Get PDF
    MODIS collects data in both the reflected solar and thermal emissive regions using 36 spectral bands. The center wavelengths of these bands cover the3.7 to 14.24 micron region. In addition to using its on-board calibrators (OBC), which include a full aperture solar diffuser (SD) and a blackbody (BB), lunar observations have been scheduled on a regular basis to support both Terra and Aqua MODIS on-orbit calibration and characterization. This paper provides an overview of MODIS lunar observations and their applications for the reflective solar bands (RSB) and thermal emissive bands (TEB) with an emphasis on potential calibration improvements of MODIS band 21 at 3.96 microns. This spectral band has detectors set with low gains to enable fire detection. Methodologies are proposed and examined on the use of lunar observations for the band 21 calibration. Also presented in this paper are preliminary results derived from Terra MODIS lunar observations and remaining challenging issues

    PACE Technical Report Series, Volume 7: Ocean Color Instrument (OCI) Concept Design Studies

    Get PDF
    Extending OCI hyperspectral radiance measurements in the ultraviolet to 320 nm on the blue spectrograph enables quantitation of atmospheric total column ozone (O3) for use in ocean color atmospheric correction algorithms. The strong absorption by atmospheric ozone below 340 nm enables the quantification of total column ozone. Other applications are possible but were not investigated due to their exploratory nature and lower priority.The first step in the atmospheric correction processing, which converts top-of-the-atmosphere radiances to water-leaving radiances, is removal of the absorbance by atmospheric trace gases such as water vapor, oxygen, ozone and nitrogen dioxide. Details of the atmospheric correction process currently used by the Ocean Biology Processing Group (OBPG) and will be employed for PACE with appropriate modifications, are described by Mobley et al. [2016]. Atmospheric ozone absorbs within the visible to near-infrared spectrum between ~450 nm and 800nm and most appreciably between 530 nm and 650 nm, a spectral region critical for maintaining NASA's chlorophyll-a climate data record and for PACE algorithms planned to characterize phytoplankton community composition and other ocean color products.While satellite-based observations will likely be available during PACE's mission lifetime, the difference in acquisition time with PACE, the coarseness in their spatial resolution, and differences in viewing geometries will introduce significant levels of uncertainties in PACE ocean color data products

    CIRA annual report FY 2013/2014

    Get PDF
    corecore