9 research outputs found

    Image restoration in digital photography

    Get PDF
    This paper introduces some novel image restoration algorithms for digital photography, which has one of the fastest growing consumer electronics markets in recent years. Many attempts have been made to improve the quality of the digital pictures in comparison with photography taken on films. A lot of these methods have their roots in discrete signal and image processing developed over the last two decades, but the ever-increasing computational power of personal computers has made possible new designs and advanced techniques. The algorithms we are presenting here take advantage of the programmability of the pixels and the availability of a compression codec commonly found inside digital cameras, and work in compliance with either the JPEG or the JPEG-2000 image compression standard.published_or_final_versio

    Novi algoritam za kompresiju seizmičkih podataka velike amplitudske rezolucije

    Get PDF
    Renewable sources cannot meet energy demand of a growing global market. Therefore, it is expected that oil & gas will remain a substantial sources of energy in a coming years. To find a new oil & gas deposits that would satisfy growing global energy demands, significant efforts are constantly involved in finding ways to increase efficiency of a seismic surveys. It is commonly considered that, in an initial phase of exploration and production of a new fields, high-resolution and high-quality images of the subsurface are of the great importance. As one part in the seismic data processing chain, efficient managing and delivering of a large data sets, that are vastly produced by the industry during seismic surveys, becomes extremely important in order to facilitate further seismic data processing and interpretation. In this respect, efficiency to a large extent relies on the efficiency of the compression scheme, which is often required to enable faster transfer and access to data, as well as efficient data storage. Motivated by the superior performance of High Efficiency Video Coding (HEVC), and driven by the rapid growth in data volume produced by seismic surveys, this work explores a 32 bits per pixel (b/p) extension of the HEVC codec for compression of seismic data. It is proposed to reassemble seismic slices in a format that corresponds to video signal and benefit from the coding gain achieved by HEVC inter mode, besides the possible advantages of the (still image) HEVC intra mode. To this end, this work modifies almost all components of the original HEVC codec to cater for high bit-depth coding of seismic data: Lagrange multiplier used in optimization of the coding parameters has been adapted to the new data statistics, core transform and quantization have been reimplemented to handle the increased bit-depth range, and modified adaptive binary arithmetic coder has been employed for efficient entropy coding. In addition, optimized block selection, reduced intra prediction modes, and flexible motion estimation are tested to adapt to the structure of seismic data. Even though the new codec after implementation of the proposed modifications goes beyond the standardized HEVC, it still maintains a generic HEVC structure, and it is developed under the general HEVC framework. There is no similar work in the field of the seismic data compression that uses the HEVC as a base codec setting. Thus, a specific codec design has been tailored which, when compared to the JPEG-XR and commercial wavelet-based codec, significantly improves the peak-signal-tonoise- ratio (PSNR) vs. compression ratio performance for 32 b/p seismic data. Depending on a proposed configurations, PSNR gain goes from 3.39 dB up to 9.48 dB. Also, relying on the specific characteristics of seismic data, an optimized encoder is proposed in this work. It reduces encoding time by 67.17% for All-I configuration on trace image dataset, and 67.39% for All-I, 97.96% for P2-configuration and 98.64% for B-configuration on 3D wavefield dataset, with negligible coding performance losses. As a side contribution of this work, HEVC is analyzed within all of its functional units, so that the presented work itself can serve as a specific overview of methods incorporated into the standard

    Rétroingénierie du son pour l écoute active et autres applications

    Get PDF
    Ce travail s intéresse au problème de la rétroingénierie du son pour l écoute active. Le format considéré correspond au CD audio. Le contenu musical est vu comme le résultat d un enchaînement de la composition, l enregistrement, le mixage et le mastering. L inversion des deux dernières étapes constitue le fond du problème présent. Le signal audio est traité comme un mélange post-non-linéaire. Ainsi, le mélange est décompressé avant d'être décomposé en pistes audio. Le problème est abordé dans un contexte informé : l inversion est accompagnée d'une information qui est spécifique à la production du contenu. De cette manière, la qualité de l inversion est significativement améliorée. L information est réduite de taille en se servant des méthodes de quantification, codage, et des faits sur la psychoacoustique. Les méthodes proposées s appliquent en temps réel et montrent une complexité basse. Les résultats obtenus améliorent l état de l art et contribuent aux nouvelles connaissances.This work deals with the problem of reverse audio engineering for active listening. The format under consideration corresponds to the audio CD. The musical content is viewed as the result of a concatenation of the composition, the recording, the mixing, and the mastering. The inversion of the two latter stages constitutes the core of the problem at hand. The audio signal is treated as a post-nonlinear mixture. Thus, the mixture is decompressed before being decomposed into audio tracks. The problem is tackled in an informed context: The inversion is accompanied by information which is specific to the content production. In this manner, the quality of the inversion is significantly improved. The information is reduced in size by the use of quantification and coding methods, and some facts on psychoacoustics. The proposed methods are applicable in real time and have a low complexity. The obtained results advance the state of the art and contribute new insights.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Compression of 3D models with NURBS

    Get PDF
    With recent progress in computing, algorithmics and telecommunications, 3D models are increasingly used in various multimedia applications. Examples include visualization, gaming, entertainment and virtual reality. In the multimedia domain 3D models have been traditionally represented as polygonal meshes. This piecewise planar representation can be thought of as the analogy of bitmap images for 3D surfaces. As bitmap images, they enjoy great flexibility and are particularly well suited to describing information captured from the real world, through, for instance, scanning processes. They suffer, however, from the same shortcomings, namely limited resolution and large storage size. The compression of polygonal meshes has been a very active field of research in the last decade and rather efficient compression algorithms have been proposed in the literature that greatly mitigate the high storage costs. However, such a low level description of a 3D shape has a bounded performance. More efficient compression should be reachable through the use of higher level primitives. This idea has been explored to a great extent in the context of model based coding of visual information. In such an approach, when compressing the visual information a higher level representation (e.g., 3D model of a talking head) is obtained through analysis methods. This can be seen as an inverse projection problem. Once this task is fullled, the resulting parameters of the model are coded instead of the original information. It is believed that if the analysis module is efficient enough, the total cost of coding (in a rate distortion sense) will be greatly reduced. The relatively poor performance and high complexity of currently available analysis methods (except for specific cases where a priori knowledge about the nature of the objects is available), has refrained a large deployment of coding techniques based on such an approach. Progress in computer graphics has however changed this situation. In fact, nowadays, an increasing number of pictures, video and 3D content are generated by synthesis processing rather than coming from a capture device such as a camera or a scanner. This means that the underlying model in the synthesis stage can be used for their efficient coding without the need for a complex analysis module. In other words it would be a mistake to attempt to compress a low level description (e.g., a polygonal mesh) when a higher level one is available from the synthesis process (e.g., a parametric surface). This is, however, what is usually done in the multimedia domain, where higher level 3D model descriptions are converted to polygonal meshes, if anything by the lack of standard coded formats for the former. On a parallel but related path, the way we consume audio-visual information is changing. As opposed to recent past and a large part of today's applications, interactivity is becoming a key element in the way we consume information. In the context of interest in this dissertation, this means that when coding visual information (an image or a video for instance), previously obvious considerations such as decision on sampling parameters are not so obvious anymore. In fact, as in an interactive environment the effective display resolution can be controlled by the user through zooming, there is no clear optimal setting for the sampling period. This means that because of interactivity, the representation used to code the scene should allow the display of objects in a variety of resolutions, and ideally up to infinity. One way to resolve this problem would be by extensive over-sampling. But this approach is unrealistic and too expensive to implement in many situations. The alternative would be to use a resolution independent representation. In the realm of 3D modeling, such representations are usually available when the models are created by an artist on a computer. The scope of this dissertation is precisely the compression of 3D models in higher level forms. The direct coding in such a form should yield improved rate-distortion performance while providing a large degree of resolution independence. There has not been, so far, any major attempt to efficiently compress these representations, such as parametric surfaces. This thesis proposes a solution to overcome this gap. A variety of higher level 3D representations exist, of which parametric surfaces are a popular choice among designers. Within parametric surfaces, Non-Uniform Rational B-Splines (NURBS) enjoy great popularity as a wide range of NURBS based modeling tools are readily available. Recently, NURBS has been included in the Virtual Reality Modeling Language (VRML) and its next generation descendant eXtensible 3D (X3D). The nice properties of NURBS and their widespread use has lead us to choose them as the form we use for the coded representation. The primary goal of this dissertation is the definition of a system for coding 3D NURBS models with guaranteed distortion. The basis of the system is entropy coded differential pulse coded modulation (DPCM). In the case of NURBS, guaranteeing the distortion is not trivial, as some of its parameters (e.g., knots) have a complicated influence on the overall surface distortion. To this end, a detailed distortion analysis is performed. In particular, previously unknown relations between the distortion of knots and the resulting surface distortion are demonstrated. Compression efficiency is pursued at every stage and simple yet efficient entropy coder realizations are defined. The special case of degenerate and closed surfaces with duplicate control points is addressed and an efficient yet simple coding is proposed to compress the duplicate relationships. Encoder aspects are also analyzed. Optimal predictors are found that perform well across a wide class of models. Simplification techniques are also considered for improved compression efficiency at negligible distortion cost. Transmission over error prone channels is also considered and an error resilient extension defined. The data stream is partitioned by independently coding small groups of surfaces and inserting the necessary resynchronization markers. Simple strategies for achieving the desired level of protection are proposed. The same extension also serves the purpose of random access and on-the-fly reordering of the data stream

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    A Study of the Structural Similarity Image Quality Measure with Applications to Image Processing

    Get PDF
    Since its introduction in 2004, the Structural Similarity (SSIM) index has gained widespread popularity as an image quality assessment measure. SSIM is currently recognized to be one of the most powerful methods of assessing the visual closeness of images. That being said, the Mean Squared Error (MSE), which performs very poorly from a perceptual point of view, still remains the most common optimization criterion in image processing applications because of its relative simplicity along with a number of other properties that are deemed important. In this thesis, some necessary tools to assist in the design of SSIM-optimal algorithms are developed. This work combines theoretical developments with experimental research and practical algorithms. The description of the mathematical properties of the SSIM index represents the principal theoretical achievement in this thesis. Indeed, it is demonstrated how the SSIM index can be transformed into a distance metric. Local convexity, quasi-convexity, symmetries and invariance properties are also proved. The study of the SSIM index is also generalized to a family of metrics called normalized (or M-relative) metrics. Various analytical techniques for different kinds of SSIM-based optimization are then devised. For example, the best approximation according to the SSIM is described for orthogonal and redundant basis sets. SSIM-geodesic paths with arclength parameterization are also traced between images. Finally, formulas for SSIM-optimal point estimators are obtained. On the experimental side of the research, the structural self-similarity of images is studied. This leads to the confirmation of the hypothesis that the main source of self-similarity of images lies in their regions of low variance. On the practical side, an implementation of local statistical tests on the image residual is proposed for the assessment of denoised images. Also, heuristic estimations of the SSIM index and the MSE are developed. The research performed in this thesis should lead to the development of state-of-the-art image denoising algorithms. A better comprehension of the mathematical properties of the SSIM index represents another step toward the replacement of the MSE with SSIM in image processing applications

    Symmetric and Asymmetric Data in Solution Models

    Get PDF
    This book is a Printed Edition of the Special Issue that covers research on symmetric and asymmetric data that occur in real-life problems. We invited authors to submit their theoretical or experimental research to present engineering and economic problem solution models that deal with symmetry or asymmetry of different data types. The Special Issue gained interest in the research community and received many submissions. After rigorous scientific evaluation by editors and reviewers, seventeen papers were accepted and published. The authors proposed different solution models, mainly covering uncertain data in multicriteria decision-making (MCDM) problems as complex tools to balance the symmetry between goals, risks, and constraints to cope with the complicated problems in engineering or management. Therefore, we invite researchers interested in the topics to read the papers provided in the book

    Corrections to 'JPEG dequantization array for regularized decompression'

    No full text
    The RKHS-based optimal image interpolation method, presented by Chen and de Figueiredo (1993), is applied to scattered potential field measurements. The RKHS which admits only interpolants consistent with Laplace's equation is defined and its kernel, derived. The algorithm is compared to bicubic spline interpolation, and is found to yield vastly superior results
    corecore