19 research outputs found

    Location of Intelligent Carts Using RFID

    Get PDF

    Workshop on Modelling of Objects, Components, and Agents, Aarhus, Denmark, August 27-28, 2001

    Get PDF
    This booklet contains the proceedings of the workshop Modelling of Objects, Components, and Agents (MOCA'01), August 27-28, 2001. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark and the "Theoretical Foundations of Computer Science" Group at the University of Hamburg, Germany. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop01

    Proceedings of the 2nd International Workshop on Security in Mobile Multiagent Systems

    Get PDF
    This report contains the Proceedings of the Second Workshop on Security on Security of Mobile Multiagent Systems (SEMAS2002). The Workshop was held in Montreal, Canada as a satellite event to the 5th International Conference on Autonomous Agents in 2001. The far reaching influence of the Internet has resulted in an increased interest in agent technologies, which are poised to play a key role in the implementation of successful Internet and WWW-based applications in the future. While there is still considerable hype concerning agent technologies, there is also an increasing awareness of the problems involved. In particular, that these applications will not be successful unless security issues can be adequately handled. Although there is a large body of work on cryptographic techniques that provide basic building-blocks to solve specific security problems, relatively little work has been done in investigating security in the multiagent system context. Related problems are secure communication between agents, implementation of trust models/authentication procedures or even reflections of agents on security mechanisms. The introduction of mobile software agents significantly increases the risks involved in Internet and WWW-based applications. For example, if we allow agents to enter our hosts or private networks, we must offer the agents a platform so that they can execute correctly but at the same time ensure that they will not have deleterious effects on our hosts or any other agents / processes in our network. If we send out mobile agents, we should also be able to provide guarantees about specific aspects of their behaviour, i.e., we are not only interested in whether the agents carry out-out their intended task correctly. They must defend themselves against attacks initiated by other agents, and survive in potentially malicious environments. Agent technologies can also be used to support network security. For example in the context of intrusion detection, intelligent guardian agents may be used to analyse the behaviour of agents on a firewall or intelligent monitoring agents can be used to analyse the behaviour of agents migrating through a network. Part of the inspiration for such multi-agent systems comes from primitive animal behaviour, such as that of guardian ants protecting their hill or from biological immune systems

    Trusting IT Artifacts: How Trust Affects our Use of Technology

    Get PDF
    Despite recent interest in the role of trust in Information Systems, the potential of IS to foster trust in business relationships remains largely untapped. In order to better realize this potential, this dissertation examines three areas of IS trust research for which research is particularly limited: (1) the IT artifact as a target of trust, (2) IS-based source credibility as an antecedent of trust, and (3) the effect of anonymity on trust in online environments. The objective of this dissertation is to examine the effects of IS on trust in each of these areas. To do so, a multi-paper dissertation format is adopted in which each area examined constitutes a distinct, though complimentary, study. Together, these studies further research on how IS can enhance trust in business relationships

    An Autonomic Cross-Platform Operating Environment for On-Demand Internet Computing

    Get PDF
    The Internet has evolved into a global and ubiquitous communication medium interconnecting powerful application servers, diverse desktop computers and mobile notebooks. Along with recent developments in computer technology, such as the convergence of computing and communication devices, the way how people use computers and the Internet has changed people´s working habits and has led to new application scenarios. On the one hand, pervasive computing, ubiquitous computing and nomadic computing become more and more important since different computing devices like PDAs and notebooks may be used concurrently and alternately, e.g. while the user is on the move. On the other hand, the ubiquitous availability and pervasive interconnection of computing systems have fostered various trends towards the dynamic utilization and spontaneous collaboration of available remote computing resources, which are addressed by approaches like utility computing, grid computing, cloud computing and public computing. From a general point of view, the common objective of this development is the use of Internet applications on demand, i.e. applications that are not installed in advance by a platform administrator but are dynamically deployed and run as they are requested by the application user. The heterogeneous and unmanaged nature of the Internet represents a major challenge for the on demand use of custom Internet applications across heterogeneous hardware platforms, operating systems and network environments. Promising remedies are autonomic computing systems that are supposed to maintain themselves without particular user or application intervention. In this thesis, an Autonomic Cross-Platform Operating Environment (ACOE) is presented that supports On Demand Internet Computing (ODIC), such as dynamic application composition and ad hoc execution migration. The approach is based on an integration middleware called crossware that does not replace existing middleware but operates as a self-managing mediator between diverse application requirements and heterogeneous platform configurations. A Java implementation of the Crossware Development Kit (XDK) is presented, followed by the description of the On Demand Internet Computing System (ODIX). The feasibility of the approach is shown by the implementation of an Internet Application Workbench, an Internet Application Factory and an Internet Peer Federation. They illustrate the use of ODIX to support local, remote and distributed ODIC, respectively. Finally, the suitability of the approach is discussed with respect to the support of ODIC

    Reification of network resource control in multi-agent systems

    Get PDF
    In multi-agent systems [1], coordinated resource sharing is indispensable for a set of autonomous agents, which are running in the same execution space, to accomplish their computational objectives. This research presents a new approach to network resource control in multi-agent systems, based on the CyberOrgs [2] model. This approach aims to offer a mechanism to reify network resource control in multi-agent systems and to realize this mechanism in a prototype system. In order to achieve these objectives, a uniform abstraction vLink (Virtual Link) is introduced to represent network resource, and based on this abstraction, a coherent mechanism of vLink creation, allocation and consumption is developed. This mechanism is enforced in the network by applying a fine-grained flow-based scheduling scheme. In addition, concerns of computations are separated from those of resources required to complete them, which simplifies engineering of network resource control. Thus, application programmers are enabled to focus on their application development and separately declaring resource request and defining resource control policies for their applications in a simplified way. Furthermore, network resource is bounded to computations and controlled in a hierarchy to coordinate network resource usage. A computation and its sub-computations are not allowed to consume resources beyond their resource boundary. However, resources can be traded between different boundaries. In this thesis, the design and implementation of a prototype system is described as well. The prototype system is a middleware system architecture, which can be used to build systems supporting network resource control. This architecture has a layered structure and aims to achieve three goals: (1) providing an interface for programmers to express resource requests for applications and define their resource control policies; (2) specializing the CyberOrgs model to control network resource; and (3) providing carefully designed mechanisms for routing, link sharing and packet scheduling to enforce required resource allocation in the network
    corecore