2,878 research outputs found

    Natural Language based Context Modeling and Reasoning with LLMs: A Tutorial

    Full text link
    Large language models (LLMs) have become phenomenally surging, since 2018--two decades after introducing context-awareness into computing systems. Through taking into account the situations of ubiquitous devices, users and the societies, context-aware computing has enabled a wide spectrum of innovative applications, such as assisted living, location-based social network services and so on. To recognize contexts and make decisions for actions accordingly, various artificial intelligence technologies, such as Ontology and OWL, have been adopted as representations for context modeling and reasoning. Recently, with the rise of LLMs and their improved natural language understanding and reasoning capabilities, it has become feasible to model contexts using natural language and perform context reasoning by interacting with LLMs such as ChatGPT and GPT-4. In this tutorial, we demonstrate the use of texts, prompts, and autonomous agents (AutoAgents) that enable LLMs to perform context modeling and reasoning without requiring fine-tuning of the model. We organize and introduce works in the related field, and name this computing paradigm as the LLM-driven Context-aware Computing (LCaC). In the LCaC paradigm, users' requests, sensors reading data, and the command to actuators are supposed to be represented as texts. Given the text of users' request and sensor data, the AutoAgent models the context by prompting and sends to the LLM for context reasoning. LLM generates a plan of actions and responds to the AutoAgent, which later follows the action plan to foster context-awareness. To prove the concepts, we use two showcases--(1) operating a mobile z-arm in an apartment for assisted living, and (2) planning a trip and scheduling the itinerary in a context-aware and personalized manner.Comment: Under revie

    Generating Travel Itineraries Based on Travel History of Similar Users

    Get PDF
    Generally, the present disclosure is directed to generating a travel itinerary for a user based on travel history of similar users. In particular, in some implementations, the systems and methods of the present disclosure can include or otherwise leverage one or more machine-learned models to generate a travel itinerary for a user based on travel history data from one or more users

    Generating Travel Itineraries Based on User Interests

    Get PDF
    Generally, the present disclosure is directed to generating a travel itinerary for a user based on the user’s interests. In particular, in some implementations, the systems and methods of the present disclosure can include or otherwise leverage one or more machine-learned models to predict interest of a user and generate a travel itinerary based on user preferences and interests

    A multi-functional simulation platform for on-demand ride service operations

    Full text link
    On-demand ride services or ride-sourcing services have been experiencing fast development in the past decade. Various mathematical models and optimization algorithms have been developed to help ride-sourcing platforms design operational strategies with higher efficiency. However, due to cost and reliability issues (implementing an immature algorithm for real operations may result in system turbulence), it is commonly infeasible to validate these models and train/test these optimization algorithms within real-world ride sourcing platforms. Acting as a useful test bed, a simulation platform for ride-sourcing systems will be very important to conduct algorithm training/testing or model validation through trails and errors. While previous studies have established a variety of simulators for their own tasks, it lacks a fair and public platform for comparing the models or algorithms proposed by different researchers. In addition, the existing simulators still face many challenges, ranging from their closeness to real environments of ride-sourcing systems, to the completeness of different tasks they can implement. To address the challenges, we propose a novel multi-functional and open-sourced simulation platform for ride-sourcing systems, which can simulate the behaviors and movements of various agents on a real transportation network. It provides a few accessible portals for users to train and test various optimization algorithms, especially reinforcement learning algorithms, for a variety of tasks, including on-demand matching, idle vehicle repositioning, and dynamic pricing. In addition, it can be used to test how well the theoretical models approximate the simulated outcomes. Evaluated on real-world data based experiments, the simulator is demonstrated to be an efficient and effective test bed for various tasks related to on-demand ride service operations

    Data-driven Methodologies and Applications in Urban Mobility

    Get PDF
    The world is urbanizing at an unprecedented rate where urbanization goes from 39% in 1980 to 58% in 2019 (World Bank, 2019). This poses more and more transportation demand and pressure on the already at or over-capacity old transport infrastructure, especially in urban areas. Along the same timeline, more data generated as a byproduct of daily activity are being collected via the advancement of the internet of things, and computers are getting more and more powerful. These are shown by the statistics such as 90% of the world’s data is generated within the last two years and IBM’s computer is now processing at the speed of 120,000 GPS points per second. Thus, this dissertation discusses the challenges and opportunities arising from the growing demand for urban mobility, particularly in cities with outdated infrastructure, and how to capitalize on the unprecedented growth in data in solving these problems by ways of data-driven transportation-specific methodologies. The dissertation identifies three primary challenges and/or opportunities, which are (1) optimally locating dynamic wireless charging to promote the adoption of electric vehicles, (2) predicting dynamic traffic state using an enormously large dataset of taxi trips, and (3) improving the ride-hailing system with carpooling, smart dispatching, and preemptive repositioning. The dissertation presents potential solutions/methodologies that have become available only recently thanks to the extraordinary growth of data and computers with explosive power, and these methodologies are (1) bi-level optimization planning frameworks for locating dynamic wireless charging facilities, (2) Traffic Graph Convolutional Network for dynamic urban traffic state estimation, and (3) Graph Matching and Reinforcement Learning for the operation and management of mixed autonomous electric taxi fleets. These methodologies are then carefully calibrated, methodically scrutinized under various performance metrics and procedures, and validated with previous research and ground truth data, which is gathered directly from the real world. In order to bridge the gap between scientific discoveries and practical applications, the three methodologies are applied to the case study of (1) Montgomery County, MD, (2) the City of New York, and (3) the City of Chicago and from which, real-world implementation are suggested. This dissertation’s contribution via the provided methodologies, along with the continual increase in data, have the potential to significantly benefit urban mobility and work toward a sustainable transportation system

    Learning-to-Dispatch: Reinforcement Learning Based Flight Planning under Emergency

    Get PDF
    The effectiveness of resource allocation under emergencies especially hurricane disasters is crucial. However, most researchers focus on emergency resource allocation in a ground transportation system. In this paper, we propose Learning-to- Dispatch (L2D), a reinforcement learning (RL) based air route dispatching system, that aims to add additional flights for hurricane evacuation while minimizing the airspace’s complexity and air traffic controller’s workload. Given a bipartite graph with weights that are learned from the historical flight data using RL in consideration of short- and long-term gains, we formulate the flight dispatch as an online maximum weight matching problem. Different from the conventional order dispatch problem, there is no actual or estimated index that can evaluate how the additional evacuation flights influence the air traffic complexity. Then we propose a multivariate reward function in the learning phase and compare it with other univariate reward designs to show its superior performance. The experiments using the real world dataset for Hurricane Irma demonstrate the efficacy and efficiency of our proposed schema

    Human-AI complex task planning

    Get PDF
    The process of complex task planning is ubiquitous and arises in a variety of compelling applications. A few leading examples include designing a personalized course plan or trip plan, designing music playlists/work sessions in web applications, or even planning routes of naval assets to collaboratively discover an unknown destination. For all of these aforementioned applications, creating a plan requires satisfying a basic construct, i.e., composing a sequence of sub-tasks (or items) that optimizes several criteria and satisfies constraints. For instance, in course planning, sub-tasks or items are core and elective courses, and degree requirements capture their complex dependencies as constraints. In trip planning, sub-tasks are points of interest (POIs) and constraints represent time and monetary budget, or user-specified requirements. Needless to say, task plans are to be individualized and designed considering uncertainty. When done manually, the process is human-intensive and tedious, and unlikely to scale. The goal of this dissertation is to present computational frameworks that synthesize the capabilities of human and AI algorithms to enable task planning at scale while satisfying multiple objectives and complex constraints. This dissertation makes significant contributions in four main areas, (i) proposing novel models, (ii) designing principled scalable algorithms, (iii) conducting rigorous experimental analysis, and (iv) deploying designed solutions in the real-world. A suite of constrained and multi-objective optimization problems has been formalized, with a focus on their applicability across diverse domains. From an algorithmic perspective, the dissertation proposes principled algorithms with theoretical guarantees adapted from discrete optimization techniques, as well as Reinforcement Learning based solutions. The memory and computational efficiency of these algorithms have been studied, and optimization opportunities have been proposed. The designed solutions are extensively evaluated on various large-scale real-world and synthetic datasets and compared against multiple baseline solutions after appropriate adaptation. This dissertation also presents user study results involving human subjects to validate the effectiveness of the proposed models. Lastly, a notable outcome of this dissertation is the deployment of one of the developed solutions at the Naval Postgraduate School. This deployment enables simultaneous route planning for multiple assets that are robust to uncertainty under multiple contexts

    A REINFORCEMENT LEARNING APPROACH TO VEHICLE PATH OPTIMIZATION IN URBAN ENVIRONMENTS

    Get PDF
    Road traffic management in metropolitan cities and urban areas, in general, is an important component of Intelligent Transportation Systems (ITS). With the increasing number of world population and vehicles, a dramatic increase in road traffic is expected to put pressure on the transportation infrastructure. Therefore, there is a pressing need to devise new ways to optimize the traffic flow in order to accommodate the growing needs of transportation systems. This work proposes to use an Artificial Intelligent (AI) method based on reinforcement learning techniques for computing near-optimal vehicle itineraries applied to Vehicular Ad-hoc Networks (VANETs). These itineraries are optimized based on the vehicle’s travel distance, travel time, and traffic road congestion. The problem of traffic density is formulated as a Markov Decision Process (MDP). In particular, this work introduces a new reward function that takes into account the traffic congestion when learning about the vehicle’s best action (best turn) to take in different situations. To learn the effect of this approach, the work investigated different learning algorithms such as Q-Learning and SARSA in conjunction with two exploration strategies: (a) e-greedy and (b) Softmax. A comparative performance study of these methods is presented to determine the most effective solution that enables the vehicles to find a fast and reliable path. Simulation experiments illustrate the effectiveness of proposed methods in computing optimal itineraries allowing vehicles to avoid traffic congestion while maintaining reasonable travel times and distances

    DigiCraft: A Pedagogical Innovative Proposal for the Development of the Digital Competence in Vulnerable Children

    Get PDF
    [EN] The integration of citizens in the society of information and knowledge is a pillar in social cohesiveness. The digital gap, a direct consequence of socioeconomic inequality among citizens enables e-exclusion, which is a new way of social exclusion that excludes people from different economic, social and economic backgrounds out of the society of information and knowledge. The aim of this paper is to present an educational programme lead by the Foundation Vodafone Spain with the assessment of educators and experts at university. The objective is focused on the development of the digital competence centred on vulnerable childhood. This program uses a method based on learning-by-doing and the “maker” movement. The majority of educators who have participated have underlined that children have improved their digital competence and also some transversal competencies and have defined it as an innovative and creative programme. DigiCraft contributes to the acquisition and development of digital competence from a social perspective. The proposal avoids discrimination of children depending on their sociable heterogeneous factors in their education
    • …
    corecore