5,299 research outputs found

    Conjugate gradient acceleration of iteratively re-weighted least squares methods

    Full text link
    Iteratively Re-weighted Least Squares (IRLS) is a method for solving minimization problems involving non-quadratic cost functions, perhaps non-convex and non-smooth, which however can be described as the infimum over a family of quadratic functions. This transformation suggests an algorithmic scheme that solves a sequence of quadratic problems to be tackled efficiently by tools of numerical linear algebra. Its general scope and its usually simple implementation, transforming the initial non-convex and non-smooth minimization problem into a more familiar and easily solvable quadratic optimization problem, make it a versatile algorithm. However, despite its simplicity, versatility, and elegant analysis, the complexity of IRLS strongly depends on the way the solution of the successive quadratic optimizations is addressed. For the important special case of compressed sensing\textit{compressed sensing} and sparse recovery problems in signal processing, we investigate theoretically and numerically how accurately one needs to solve the quadratic problems by means of the conjugate gradient\textit{conjugate gradient} (CG) method in each iteration in order to guarantee convergence. The use of the CG method may significantly speed-up the numerical solution of the quadratic subproblems, in particular, when fast matrix-vector multiplication (exploiting for instance the FFT) is available for the matrix involved. In addition, we study convergence rates. Our modified IRLS method outperforms state of the art first order methods such as Iterative Hard Thresholding (IHT) or Fast Iterative Soft-Thresholding Algorithm (FISTA) in many situations, especially in large dimensions. Moreover, IRLS is often able to recover sparse vectors from fewer measurements than required for IHT and FISTA.Comment: 40 page

    Proof of Convergence and Performance Analysis for Sparse Recovery via Zero-point Attracting Projection

    Full text link
    A recursive algorithm named Zero-point Attracting Projection (ZAP) is proposed recently for sparse signal reconstruction. Compared with the reference algorithms, ZAP demonstrates rather good performance in recovery precision and robustness. However, any theoretical analysis about the mentioned algorithm, even a proof on its convergence, is not available. In this work, a strict proof on the convergence of ZAP is provided and the condition of convergence is put forward. Based on the theoretical analysis, it is further proved that ZAP is non-biased and can approach the sparse solution to any extent, with the proper choice of step-size. Furthermore, the case of inaccurate measurements in noisy scenario is also discussed. It is proved that disturbance power linearly reduces the recovery precision, which is predictable but not preventable. The reconstruction deviation of pp-compressible signal is also provided. Finally, numerical simulations are performed to verify the theoretical analysis.Comment: 29 pages, 6 figure

    Relevance Singular Vector Machine for low-rank matrix sensing

    Full text link
    In this paper we develop a new Bayesian inference method for low rank matrix reconstruction. We call the new method the Relevance Singular Vector Machine (RSVM) where appropriate priors are defined on the singular vectors of the underlying matrix to promote low rank. To accelerate computations, a numerically efficient approximation is developed. The proposed algorithms are applied to matrix completion and matrix reconstruction problems and their performance is studied numerically.Comment: International Conference on Signal Processing and Communications (SPCOM), 5 page
    • …
    corecore