4,511 research outputs found

    Optimization of patch antennas via multithreaded simulated annealing based design exploration

    Get PDF
    In this paper, we present a new software framework for the optimization of the design of microstrip patch antennas. The proposed simulation and optimization framework implements a simulated annealing algorithm to perform design space exploration in order to identify the optimal patch antenna design. During each iteration of the optimization loop, we employ the popular MEEP simulation tool to evaluate explored design solutions. To speed up the design space exploration, the software framework is developed to run multiple MEEP simulations concurrently. This is achieved using multithreading to implement a manager-workers execution strategy. The number of worker threads is the same as the number of cores of the computer that is utilized. Thus, the computational runtime of the proposed software framework enables effective design space exploration. Simulations demonstrate the effectiveness of the proposed software framework

    Miniature Wideband stacked microstrip patch antenna based on the sierpinski fractal geometry

    Get PDF
    The main interest in the design of a miniature microstrip patch antenna (MPA) is its small size in conjunction with the well-known advantages of a MPA (cost, profile, weight). However there is a big constraint on the bandwidth limitation either in a miniature antenna or in a MPA. The proposed solution to overcome such problem is to couple a miniature parasitic resonator to the miniature active patch forming a wideband small stacked microstrip patch antenna.Peer ReviewedPostprint (published version

    Fast design optimization of UWB antenna with WLAN Band-Notch

    Get PDF
    In this paper, a methodology for rapid design optimization of an ultra-wideband ( UWB) monopole antenna with a lower WLAN band-notch is presented. The band-notch is realized using an open loop resonator implemented in the radiation patch of the antenna. Design optimization is a two stage process, with the first stage focused on the design of the antenna itself, and the second stage aiming at identification of the appropriate dimensions of the resonator with the purpose of allocating the band-notch in the desired frequency range. Both optimization stages are realized using surrogate-based optimization involving variable-fidelity electromagnetic ( EM) simulation models as well as an additive response correction ( first stage), and sequential approximate optimization ( second stage). The final antenna design is obtained at the CPU cost corresponding to only 23 high-fidelity EM antenna simulations

    UTHM water quality classification based on sub index

    Get PDF
    River or stream at their source is unpolluted, but as water flow downstream, the river or lake is receiving point and non-point pollutant source. Ammoniacal nitrogen (NH3- N) and suspended solids (SS) strongly influences the dynamics of the dissolved oxygen in the water. Studies on monitoring this parameter were conducted for a river or lake but limited to the small man-made lake. This study is initiate to determine the changes in water quality of UTHM watershed as the water flows from upstream to downstream. The monitoring of NH3-N and TSS were monitored at two sampling schemes, 1) at the two-week interval and, 2) at a daily basis followed by the determination of the water quality sub-index particularly SIAN and SISS. The results showed that the two lakes in UTHM watershed were classified as polluted. In conclusion, the remedial action should be implemented to improve the water quality to meet the requirements at least to meet the recreational purpose

    Dynamic double directional propagation channel analysis with dual circular arrays

    Get PDF
    Dynamic double directional propagation channel analysis with dual circular arrays. (pp. 6 p). Peer reviewed versio
    • …
    corecore