2,604 research outputs found

    Boolean Matrix Factorization and Noisy Completion via Message Passing

    Full text link
    Boolean matrix factorization and Boolean matrix completion from noisy observations are desirable unsupervised data-analysis methods due to their interpretability, but hard to perform due to their NP-hardness. We treat these problems as maximum a posteriori inference problems in a graphical model and present a message passing approach that scales linearly with the number of observations and factors. Our empirical study demonstrates that message passing is able to recover low-rank Boolean matrices, in the boundaries of theoretically possible recovery and compares favorably with state-of-the-art in real-world applications, such collaborative filtering with large-scale Boolean data

    Fast Low-Rank Bayesian Matrix Completion with Hierarchical Gaussian Prior Models

    Full text link
    The problem of low rank matrix completion is considered in this paper. To exploit the underlying low-rank structure of the data matrix, we propose a hierarchical Gaussian prior model, where columns of the low-rank matrix are assumed to follow a Gaussian distribution with zero mean and a common precision matrix, and a Wishart distribution is specified as a hyperprior over the precision matrix. We show that such a hierarchical Gaussian prior has the potential to encourage a low-rank solution. Based on the proposed hierarchical prior model, a variational Bayesian method is developed for matrix completion, where the generalized approximate massage passing (GAMP) technique is embedded into the variational Bayesian inference in order to circumvent cumbersome matrix inverse operations. Simulation results show that our proposed method demonstrates superiority over existing state-of-the-art matrix completion methods

    Collaborative filtering via sparse Markov random fields

    Full text link
    Recommender systems play a central role in providing individualized access to information and services. This paper focuses on collaborative filtering, an approach that exploits the shared structure among mind-liked users and similar items. In particular, we focus on a formal probabilistic framework known as Markov random fields (MRF). We address the open problem of structure learning and introduce a sparsity-inducing algorithm to automatically estimate the interaction structures between users and between items. Item-item and user-user correlation networks are obtained as a by-product. Large-scale experiments on movie recommendation and date matching datasets demonstrate the power of the proposed method

    Statistical Estimation: From Denoising to Sparse Regression and Hidden Cliques

    Full text link
    These notes review six lectures given by Prof. Andrea Montanari on the topic of statistical estimation for linear models. The first two lectures cover the principles of signal recovery from linear measurements in terms of minimax risk. Subsequent lectures demonstrate the application of these principles to several practical problems in science and engineering. Specifically, these topics include denoising of error-laden signals, recovery of compressively sensed signals, reconstruction of low-rank matrices, and also the discovery of hidden cliques within large networks.Comment: Chapter of "Statistical Physics, Optimization, Inference, and Message-Passing Algorithms", Eds.: F. Krzakala, F. Ricci-Tersenghi, L. Zdeborova, R. Zecchina, E. W. Tramel, L. F. Cugliandolo (Oxford University Press, to appear

    Learning Actor Relation Graphs for Group Activity Recognition

    Full text link
    Modeling relation between actors is important for recognizing group activity in a multi-person scene. This paper aims at learning discriminative relation between actors efficiently using deep models. To this end, we propose to build a flexible and efficient Actor Relation Graph (ARG) to simultaneously capture the appearance and position relation between actors. Thanks to the Graph Convolutional Network, the connections in ARG could be automatically learned from group activity videos in an end-to-end manner, and the inference on ARG could be efficiently performed with standard matrix operations. Furthermore, in practice, we come up with two variants to sparsify ARG for more effective modeling in videos: spatially localized ARG and temporal randomized ARG. We perform extensive experiments on two standard group activity recognition datasets: the Volleyball dataset and the Collective Activity dataset, where state-of-the-art performance is achieved on both datasets. We also visualize the learned actor graphs and relation features, which demonstrate that the proposed ARG is able to capture the discriminative relation information for group activity recognition.Comment: Accepted by CVPR 201

    Machine Learning on Graphs: A Model and Comprehensive Taxonomy

    Full text link
    There has been a surge of recent interest in learning representations for graph-structured data. Graph representation learning methods have generally fallen into three main categories, based on the availability of labeled data. The first, network embedding (such as shallow graph embedding or graph auto-encoders), focuses on learning unsupervised representations of relational structure. The second, graph regularized neural networks, leverages graphs to augment neural network losses with a regularization objective for semi-supervised learning. The third, graph neural networks, aims to learn differentiable functions over discrete topologies with arbitrary structure. However, despite the popularity of these areas there has been surprisingly little work on unifying the three paradigms. Here, we aim to bridge the gap between graph neural networks, network embedding and graph regularization models. We propose a comprehensive taxonomy of representation learning methods for graph-structured data, aiming to unify several disparate bodies of work. Specifically, we propose a Graph Encoder Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs (e.g. GraphSage, Graph Convolutional Networks, Graph Attention Networks), and unsupervised learning of graph representations (e.g. DeepWalk, node2vec, etc) into a single consistent approach. To illustrate the generality of this approach, we fit over thirty existing methods into this framework. We believe that this unifying view both provides a solid foundation for understanding the intuition behind these methods, and enables future research in the area

    Hinge-Loss Markov Random Fields and Probabilistic Soft Logic

    Full text link
    A fundamental challenge in developing high-impact machine learning technologies is balancing the need to model rich, structured domains with the ability to scale to big data. Many important problem areas are both richly structured and large scale, from social and biological networks, to knowledge graphs and the Web, to images, video, and natural language. In this paper, we introduce two new formalisms for modeling structured data, and show that they can both capture rich structure and scale to big data. The first, hinge-loss Markov random fields (HL-MRFs), is a new kind of probabilistic graphical model that generalizes different approaches to convex inference. We unite three approaches from the randomized algorithms, probabilistic graphical models, and fuzzy logic communities, showing that all three lead to the same inference objective. We then define HL-MRFs by generalizing this unified objective. The second new formalism, probabilistic soft logic (PSL), is a probabilistic programming language that makes HL-MRFs easy to define using a syntax based on first-order logic. We introduce an algorithm for inferring most-probable variable assignments (MAP inference) that is much more scalable than general-purpose convex optimization methods, because it uses message passing to take advantage of sparse dependency structures. We then show how to learn the parameters of HL-MRFs. The learned HL-MRFs are as accurate as analogous discrete models, but much more scalable. Together, these algorithms enable HL-MRFs and PSL to model rich, structured data at scales not previously possible

    Crowd Labeling: a survey

    Full text link
    Recently, there has been a burst in the number of research projects on human computation via crowdsourcing. Multiple choice (or labeling) questions could be referred to as a common type of problem which is solved by this approach. As an application, crowd labeling is applied to find true labels for large machine learning datasets. Since crowds are not necessarily experts, the labels they provide are rather noisy and erroneous. This challenge is usually resolved by collecting multiple labels for each sample, and then aggregating them to estimate the true label. Although the mechanism leads to high-quality labels, it is not actually cost-effective. As a result, efforts are currently made to maximize the accuracy in estimating true labels, while fixing the number of acquired labels. This paper surveys methods to aggregate redundant crowd labels in order to estimate unknown true labels. It presents a unified statistical latent model where the differences among popular methods in the field correspond to different choices for the parameters of the model. Afterwards, algorithms to make inference on these models will be surveyed. Moreover, adaptive methods which iteratively collect labels based on the previously collected labels and estimated models will be discussed. In addition, this paper compares the distinguished methods, and provides guidelines for future work required to address the current open issues.Comment: Under consideration for publication in Knowledge and Information System

    Gaussian Belief Propagation: Theory and Aplication

    Full text link
    The canonical problem of solving a system of linear equations arises in numerous contexts in information theory, communication theory, and related fields. In this contribution, we develop a solution based upon Gaussian belief propagation (GaBP) that does not involve direct matrix inversion. The iterative nature of our approach allows for a distributed message-passing implementation of the solution algorithm. In the first part of this thesis, we address the properties of the GaBP solver. We characterize the rate of convergence, enhance its message-passing efficiency by introducing a broadcast version, discuss its relation to classical solution methods including numerical examples. We present a new method for forcing the GaBP algorithm to converge to the correct solution for arbitrary column dependent matrices. In the second part we give five applications to illustrate the applicability of the GaBP algorithm to very large computer networks: Peer-to-Peer rating, linear detection, distributed computation of support vector regression, efficient computation of Kalman filter and distributed linear programming. Using extensive simulations on up to 1,024 CPUs in parallel using IBM Bluegene supercomputer we demonstrate the attractiveness and applicability of the GaBP algorithm, using real network topologies with up to millions of nodes and hundreds of millions of communication links. We further relate to several other algorithms and explore their connection to the GaBP algorithm.Comment: Ph.D. Thesis, Submitted to the Senate of the Hebrew University of Jerusalem, October 2008. 2nd Revision: July 200

    Personalized Bundle Recommendation in Online Games

    Full text link
    In business domains, \textit{bundling} is one of the most important marketing strategies to conduct product promotions, which is commonly used in online e-commerce and offline retailers. Existing recommender systems mostly focus on recommending individual items that users may be interested in. In this paper, we target at a practical but less explored recommendation problem named bundle recommendation, which aims to offer a combination of items to users. To tackle this specific recommendation problem in the context of the \emph{virtual mall} in online games, we formalize it as a link prediction problem on a user-item-bundle tripartite graph constructed from the historical interactions, and solve it with a neural network model that can learn directly on the graph-structure data. Extensive experiments on three public datasets and one industrial game dataset demonstrate the effectiveness of the proposed method. Further, the bundle recommendation model has been deployed in production for more than one year in a popular online game developed by Netease Games, and the launch of the model yields more than 60\% improvement on conversion rate of bundles, and a relative improvement of more than 15\% on gross merchandise volume (GMV).Comment: 8 pages, 10 figures, accepted paper on CIKM 202
    • …
    corecore