64 research outputs found

    Plug-and-Play Methods Provably Converge with Properly Trained Denoisers

    Full text link
    Plug-and-play (PnP) is a non-convex framework that integrates modern denoising priors, such as BM3D or deep learning-based denoisers, into ADMM or other proximal algorithms. An advantage of PnP is that one can use pre-trained denoisers when there is not sufficient data for end-to-end training. Although PnP has been recently studied extensively with great empirical success, theoretical analysis addressing even the most basic question of convergence has been insufficient. In this paper, we theoretically establish convergence of PnP-FBS and PnP-ADMM, without using diminishing stepsizes, under a certain Lipschitz condition on the denoisers. We then propose real spectral normalization, a technique for training deep learning-based denoisers to satisfy the proposed Lipschitz condition. Finally, we present experimental results validating the theory.Comment: Published in the International Conference on Machine Learning, 201

    A Fast Stochastic Plug-and-Play ADMM for Imaging Inverse Problems

    Get PDF
    In this work we propose an efficient stochastic plug-and-play (PnP) algorithm for imaging inverse problems. The PnP stochastic gradient descent methods have been recently proposed and shown improved performance in some imaging applications over standard deterministic PnP methods. However, current stochastic PnP methods need to frequently compute the image denoisers which can be computationally expensive. To overcome this limitation, we propose a new stochastic PnP-ADMM method which is based on introducing stochastic gradient descent inner-loops within an inexact ADMM framework. We provide the theoretical guarantee on the fixed-point convergence for our algorithm under standard assumptions. Our numerical results demonstrate the effectiveness of our approach compared with state-of-the-art PnP methods

    Plug-and-play priors for model based reconstruction

    Get PDF
    Abstract-Model-based reconstruction is a powerful framework for solving a variety of inverse problems in imaging. In recent years, enormous progress has been made in the problem of denoising, a special case of an inverse problem where the forward model is an identity operator. Similarly, great progress has been made in improving model-based inversion when the forward model corresponds to complex physical measurements in applications such as X-ray CT, electron-microscopy, MRI, and ultrasound, to name just a few. However, combining state-of-theart denoising algorithms (i.e., prior models) with state-of-the-art inversion methods (i.e., forward models) has been a challenge for many reasons. In this paper, we propose a flexible framework that allows state-of-the-art forward models of imaging systems to be matched with state-of-the-art priors or denoising models. This framework, which we term as Plug-and-Play priors, has the advantage that it dramatically simplifies software integration, and moreover, it allows state-of-the-art denoising methods that have no known formulation as an optimization problem to be used. We demonstrate with some simple examples how Plug-and-Play priors can be used to mix and match a wide variety of existing denoising models with a tomographic forward model, thus greatly expanding the range of possible problem solutions
    corecore