580 research outputs found

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    Numerical Treatment of Non-Linear Fuzzy Integral Equations by Homotopy Perturbation Method

    Get PDF
    The main purpose of this paper is to present an approximation method for solving fuzzy integral equation. The solution of various types of non-linear fuzzy integral equations like non-linear fuzzy Volterra integral equation, non-linear fuzzy Fredholm integral equation and non-linear able fuzzy integral equation is determined by an advanced iterative approach the homotopy perturbation method. The method is discussed in details and it is illustrated by solving some numerical examples. Keywords: Homotopy perturbation method, non-linear fuzzy Volterra integral equations, non-linear fuzzy Fredholm integral equation, non-linear Abel fuzzy integral equations

    On the convergence of two-dimensional fuzzy Volterra-Fredholm integral equations by using Picard method

    Get PDF
    In this paper we prove convergence of the method of successive approximations used to approximate the solution of nonlinear two-dimensional Volterra-Fredholm integral equations and define the notion of numerical stability of the algorithm with respect to the choice of the first iteration. Also we present an iterative procedure to solve such equations. Finally, the method is illustrated by solving some examples

    On the Lp-spaces techniques in the existence and uniqueness of the fuzzy fractional Korteweg-de Vries equation’s solution

    Get PDF
    In this paper, is proposed the existence and uniqueness of the solution of all fuzzy fractional differential equations, which are equivalent to the fuzzy integral equation. The techniques on LP-spaces are used, defining the LpF F ([0; 1]) for 1≤P≤∞, its properties, and using the functional analysis methods. Also the convergence of the method of successive approximations used to approximate the solution of fuzzy integral equation be proved and an iterative procedure to solve such equations is presented

    List of contents

    Get PDF

    On Some Linear and Non-linear Fuzzy Integral Equations by Homotopy Perturbation Method

    Get PDF
    Many mathematical models are contributed to give rise to of linear and nonlinear integral equations. In this paper, we study the performance of recently developed technique homotopy perturbation method by implement on various types of linear and non-linear fuzzy Volterra integral equations of second kind, mixed fuzzy volterra fredholm integral equation and singular fuzzy integral equations. Obtained results show that technique is reliable, efficient and easy to use through recursive relations that involve integrals. Moreover, these particular examples show the reliability and the performance of proposed modifications. Keywords: Homotopy perturbation method, linear fuzzy integral equations, non-linear fuzzy integral equations

    Some new results on nonlinear fractional iterative Volterra-Fredholm integro differential equations

    Get PDF
    In this paper, we establish some new results concerning the existence and uniqueness of the solutions of iterative nonlinear Volterra-Fredholm integro differential equations subject to the initial conditions. The fractional derivatives are considered in the Caputo sense. Also these new results are obtained by applying the GronwallBellman’s inequality and the Banach contraction fixed point theorem. Moreover, the results of references [16, 17, 27] appear as a special case of our results.Emerging Sources Citation Index (ESCI)MathScinetScopu

    Author Index Volume 231 (2009)

    Get PDF

    List of contents

    Get PDF
    Rev. iberoam. bioecon. cambio clim. Vol.1(1) 2015; 95-114Los cambios medioambientales globales hacen pensar en un aumento futuro de la aridez, por ello es necesario buscar alternativas que permitan un uso más eficiente del agua y reducir su consumo, teniendo en cuenta que es un recurso limitado. En la actualidad, aproximadamente el 59,7% del total de agua planificada para todos los usos en Cuba se utiliza en la agricultura, pero no más del 50% de esa agua se convierte directamente en productos agrícolas. El estudio de las funciones agua-rendimiento y su uso dentro de la planificación del agua para riego es una vía importante para trazar estrategias de manejo que contribuyan al incremento en la producción agrícola. Utilizando los datos de agua aplicada por riego y los rendimientos obtenidos en más de 100 experimentos de campo realizados fundamentalmente en suelo Ferralítico Rojo de la zona sur de La Habana y con ayuda de herramientas de análisis de regresión en este trabajo se estiman las funciones agua aplicada-rendimientos para algunos cultivos agrícolas y se analizan las posibles estrategias de optimización del riego a seguir en función de la disponibilidad de agua. Seleccionar una estrategia de máxima eficiencia del riego puede conducir a reducciones de agua a aplicar entre un 21,6 y 46,8%, incrementos de la productividad del agua entre 17 y 32% y de la relación beneficios/costo estimada de hasta un 3,4%. Lo anterior indica la importancia desde el punto de vista económico que puede llegar a alcanzar el uso de esta estrategia en condiciones de déficit hídrico. El conocimiento de las funciones agua aplicada por riego-rendimiento y el uso de la productividad del agua, resultan parámetros factibles de introducir como indicadores de eficiencia en el planeamiento del uso del agua en la agricultura, con lo cual es posible reducir los volúmenes de agua a aplicar y elevar la relación beneficio-costo actual.Rev. iberoam. bioecon. cambio clim. Vol.1(1) 2015; 95-11
    • …
    corecore