7 research outputs found

    Hunting wild stego images, a domain adaptation problem in digital image forensics

    Get PDF
    Digital image forensics is a field encompassing camera identication, forgery detection and steganalysis. Statistical modeling and machine learning have been successfully applied in the academic community of this maturing field. Still, large gaps exist between academic results and applications used by practicing forensic analysts, especially when the target samples are drawn from a different population than the data in a reference database. This thesis contains four published papers aiming at narrowing this gap in three different fields: mobile stego app detection, digital image steganalysis and camera identification. It is the first work to explore a way of extending the academic methods to real world images created by apps. New ideas and methods are developed for target images with very rich flexibility in the embedding rates, embedding algorithms, exposure settings and camera sources. The experimental results proved that the proposed methods work very well, even for the devices which are not included in the reference database

    Challenges and Open Questions of Machine Learning in Computer Security

    Get PDF
    This habilitation thesis presents advancements in machine learning for computer security, arising from problems in network intrusion detection and steganography. The thesis put an emphasis on explanation of traits shared by steganalysis, network intrusion detection, and other security domains, which makes these domains different from computer vision, speech recognition, and other fields where machine learning is typically studied. Then, the thesis presents methods developed to at least partially solve the identified problems with an overall goal to make machine learning based intrusion detection system viable. Most of them are general in the sense that they can be used outside intrusion detection and steganalysis on problems with similar constraints. A common feature of all methods is that they are generally simple, yet surprisingly effective. According to large-scale experiments they almost always improve the prior art, which is likely caused by being tailored to security problems and designed for large volumes of data. Specifically, the thesis addresses following problems: anomaly detection with low computational and memory complexity such that efficient processing of large data is possible; multiple-instance anomaly detection improving signal-to-noise ration by classifying larger group of samples; supervised classification of tree-structured data simplifying their encoding in neural networks; clustering of structured data; supervised training with the emphasis on the precision in top p% of returned data; and finally explanation of anomalies to help humans understand the nature of anomaly and speed-up their decision. Many algorithms and method presented in this thesis are deployed in the real intrusion detection system protecting millions of computers around the globe

    Photo response non-uniformity based image forensics in the presence of challenging factors

    Get PDF
    With the ever-increasing prevalence of digital imaging devices and the rapid development of networks, the sharing of digital images becomes ubiquitous in our daily life. However, the pervasiveness of powerful image-editing tools also makes the digital images an easy target for malicious manipulations. Thus, to prevent people from falling victims to fake information and trace the criminal activities, digital image forensics methods like source camera identification, source oriented image clustering and image forgery detections have been developed. Photo response non-uniformity (PRNU), which is an intrinsic sensor noise arises due to the pixels non-uniform response to the incident, has been used as a powerful tool for image device fingerprinting. The forensic community has developed a vast number of PRNU-based methods in different fields of digital image forensics. However, with the technology advancement in digital photography, the emergence of photo-sharing social networking sites, as well as the anti-forensics attacks targeting the PRNU, it brings new challenges to PRNU-based image forensics. For example, the performance of the existing forensic methods may deteriorate due to different camera exposure parameter settings and the efficacy of the PRNU-based methods can be directly challenged by image editing tools from social network sites or anti-forensics attacks. The objective of this thesis is to investigate and design effective methods to mitigate some of these challenges on PRNU-based image forensics. We found that the camera exposure parameter settings, especially the camera sensitivity, which is commonly known by the name of the ISO speed, can influence the PRNU-based image forgery detection. Hence, we first construct the Warwick Image Forensics Dataset, which contains images taken with diverse exposure parameter settings to facilitate further studies. To address the impact from ISO speed on PRNU-based image forgery detection, an ISO speed-specific correlation prediction process is proposed with a content-based ISO speed inference method to facilitate the process even if the ISO speed information is not available. We also propose a three-step framework to allow the PRNUbased source oriented clustering methods to perform successfully on Instagram images, despite some built-in image filters from Instagram may significantly distort PRNU. Additionally, for the binary classification of detecting whether an image's PRNU is attacked or not, we propose a generative adversarial network-based training strategy for a neural network-based classifier, which makes the classifier generalize better for images subject to unprecedented attacks. The proposed methods are evaluated on public benchmarking datasets and our Warwick Image Forensics Dataset, which is released to the public as well. The experimental results validate the effectiveness of the methods proposed in this thesis
    corecore