14,441 research outputs found

    Implicit high-order gas-kinetic schemes for compressible flows on three-dimensional unstructured meshes

    Full text link
    In the previous studies, the high-order gas-kinetic schemes (HGKS) have achieved successes for unsteady flows on three-dimensional unstructured meshes. In this paper, to accelerate the rate of convergence for steady flows, the implicit non-compact and compact HGKSs are developed. For non-compact scheme, the simple weighted essentially non-oscillatory (WENO) reconstruction is used to achieve the spatial accuracy, where the stencils for reconstruction contain two levels of neighboring cells. Incorporate with the nonlinear generalized minimal residual (GMRES) method, the implicit non-compact HGKS is developed. In order to improve the resolution and parallelism of non-compact HGKS, the implicit compact HGKS is developed with Hermite WENO (HWENO) reconstruction, in which the reconstruction stencils only contain one level of neighboring cells. The cell averaged conservative variable is also updated with GMRES method. Simultaneously, a simple strategy is used to update the cell averaged gradient by the time evolution of spatial-temporal coupled gas distribution function. To accelerate the computation, the implicit non-compact and compact HGKSs are implemented with the graphics processing unit (GPU) using compute unified device architecture (CUDA). A variety of numerical examples, from the subsonic to supersonic flows, are presented to validate the accuracy, robustness and efficiency of both inviscid and viscous flows.Comment: arXiv admin note: text overlap with arXiv:2203.0904

    Subsidiary Entrepreneurial Alertness: Antecedents and Outcomes

    Get PDF
    This thesis brings together concepts from both international business and entrepreneurship to develop a framework of the facilitators of subsidiary innovation and performance. This study proposes that Subsidiary Entrepreneurial Alertness (SEA) facilitates the recognition of opportunities (the origin of subsidiary initiatives). First introduced by Kirzner (1979) in the context of the individual, entrepreneurial alertness (EA) is the ability to notice an opportunity without actively searching. Similarly, to entrepreneurial alertness at the individual level, this study argues that SEA enables the subsidiary to best select opportunities based on resources available. The research further develops our conceptualisation of SEA by drawing on work by Tang et al. (2012) identifying three distinct activities of EA: scanning and search (identifying opportunities unseen by others due to their awareness gaps), association and connection of information, and evaluation and judgement to interpret or anticipate future viability of opportunities. This study then hypothesises that SEA leads to opportunity recognition at the subsidiary level and further hypothesises innovation and performance as outcomes of opportunity recognition. This research brings these arguments together to develop and test a comprehensive theoretical model. The theoretical model is tested through a mail survey of the CEOs/MDs of foreign subsidiaries within the Republic of Ireland (an innovative hub for foreign subsidiaries). This method was selected as the best method to reach the targeted respondent, and due to the depth of knowledge the target respondent holds, the survey can answer the desired question more substantially. The results were examined using partial least squares structural equation modelling (PLS-SEM). The study’s findings confirm two critical aspects of subsidiary context, subsidiary brokerage and subsidiary credibility are positively related to SEA. The study establishes a positive link between SEA and both the generation of innovation and the subsidiary’s performance. This thesis makes three significant contributions to the subsidiary literature as it 1) introduces and develops the concept of SEA, 2) identifies the antecedents of SEA, and 3) demonstrates the impact of SEA on subsidiary opportunity recognition. Implications for subsidiaries, headquarters and policy makers are discussed along with the limitations of the study

    Evaluating Factors Impacting Fallen Tree Detection from Airborne Laser Scanning Point Clouds

    Get PDF
    Fallen tree mapping provides valuable information regarding the ecological value of boreal forests. Airborne laser scanning (ALS) enables mapping fallen trees on a large scale. We compared the performance of line-detection-based individual fallen tree detection when using moderate point density ALS data (15 points/m2) and high-point-density unmanned aerial vehicle-based laser scanning (ULS) data (285 points/m2). Furthermore, we inspected the dataset and detection methodology-related factors impacting performance in each case. The results of this study showed that increasing the point density of the laser scanning dataset enables the detection of a larger proportion of fallen trees. However, based on our experiment, a line-detection-based fallen tree detection approach is sensitive to noise, thus generating a large number of false detections, especially with high-point-density data. Different types of filters, such as a simple height-based filter and machine-learning-based filters, can be used for reducing noise. However, using such filters is always a compromise, as in addition to reducing noise and thus false detections, they also reduce the number of true detections. Hence, a less noise-sensitive fallen tree detection method utilizing the finer details visible in high-density point clouds could be more suitable for high-point-density laser scanning data

    Deep Learning for Scene Flow Estimation on Point Clouds: A Survey and Prospective Trends

    Get PDF
    Aiming at obtaining structural information and 3D motion of dynamic scenes, scene flow estimation has been an interest of research in computer vision and computer graphics for a long time. It is also a fundamental task for various applications such as autonomous driving. Compared to previous methods that utilize image representations, many recent researches build upon the power of deep analysis and focus on point clouds representation to conduct 3D flow estimation. This paper comprehensively reviews the pioneering literature in scene flow estimation based on point clouds. Meanwhile, it delves into detail in learning paradigms and presents insightful comparisons between the state-of-the-art methods using deep learning for scene flow estimation. Furthermore, this paper investigates various higher-level scene understanding tasks, including object tracking, motion segmentation, etc. and concludes with an overview of foreseeable research trends for scene flow estimation

    Preferentialism and the conditionality of trade agreements. An application of the gravity model

    Get PDF
    Modern economic growth is driven by international trade, and the preferential trade agreement constitutes the primary fit-for-purpose mechanism of choice for establishing, facilitating, and governing its flows. However, too little attention has been afforded to the differences in content and conditionality associated with different trade agreements. This has led to an under-considered mischaracterisation of the design-flow relationship. Similarly, while the relationship between trade facilitation and trade is clear, the way trade facilitation affects other areas of economic activity, with respect to preferential trade agreements, has received considerably less attention. Particularly, in light of an increasingly globalised and interdependent trading system, the interplay between trade facilitation and foreign direct investment is of particular importance. Accordingly, this thesis explores the bilateral trade and investment effects of specific conditionality sets, as established within Preferential Trade Agreements (PTAs). Chapter one utilises recent content condition-indexes for depth, flexibility, and constraints on flexibility, established by Dür et al. (2014) and Baccini et al. (2015), within a gravity framework to estimate the average treatment effect of trade agreement characteristics across bilateral trade relationships in the Association of Southeast Asian Nations (ASEAN) from 1948-2015. This chapter finds that the composition of a given ASEAN trade agreement’s characteristic set has significantly determined the concomitant bilateral trade flows. Conditions determining the classification of a trade agreements depth are positively associated with an increase to bilateral trade; hereby representing the furthered removal of trade barriers and frictions as facilitated by deeper trade agreements. Flexibility conditions, and constraint on flexibility conditions, are also identified as significant determiners for a given trade agreement’s treatment effect of subsequent bilateral trade flows. Given the political nature of their inclusion (i.e., the appropriate address to short term domestic discontent) this influence is negative as regards trade flows. These results highlight the longer implementation and time frame requirements for trade impediments to be removed in a market with higher domestic uncertainty. Chapter two explores the incorporation of non-trade issue (NTI) conditions in PTAs. Such conditions are increasing both at the intensive and extensive margins. There is a concern from developing nations that this growth of NTI inclusions serves as a way for high-income (HI) nations to dictate the trade agenda, such that developing nations are subject to ‘principled protectionism’. There is evidence that NTI provisions are partly driven by protectionist motives but the effect on trade flows remains largely undiscussed. Utilising the Gravity Model for trade, I test Lechner’s (2016) comprehensive NTI dataset for 202 bilateral country pairs across a 32-year timeframe and find that, on average, NTIs are associated with an increase to bilateral trade. Primarily this boost can be associated with the market access that a PTA utilising NTIs facilitates. In addition, these results are aligned theoretically with the discussions on market harmonisation, shared values, and the erosion of artificial production advantages. Instead of inhibiting trade through burdensome cost, NTIs are acting to support a more stable production and trading environment, motivated by enhanced market access. Employing a novel classification to capture the power supremacy associated with shaping NTIs, this chapter highlights that the positive impact of NTIs is largely driven by the relationship between HI nations and middle-to-low-income (MTLI) counterparts. Chapter Three employs the gravity model, theoretically augmented for foreign direct investment (FDI), to estimate the effects of trade facilitation conditions utilising indexes established by Neufeld (2014) and the bilateral FDI data curated by UNCTAD (2014). The resultant dataset covers 104 countries, covering a period of 12 years (2001–2012), containing 23,640 observations. The results highlight the bilateral-FDI enhancing effects of trade facilitation conditions in the ASEAN context, aligning itself with the theoretical branch of FDI-PTA literature that has outlined how the ratification of a trade agreement results in increased and positive economic prospect between partners (Medvedev, 2012) resulting from the interrelation between trade and investment as set within an improving regulatory environment. The results align with the expectation that an enhanced trade facilitation landscape (one in which such formalities, procedures, information, and expectations around trade facilitation are conditioned for) is expected to incentivise and attract FDI

    Predictive Maintenance of Critical Equipment for Floating Liquefied Natural Gas Liquefaction Process

    Get PDF
    Predictive Maintenance of Critical Equipment for Liquefied Natural Gas Liquefaction Process Meeting global energy demand is a massive challenge, especially with the quest of more affinity towards sustainable and cleaner energy. Natural gas is viewed as a bridge fuel to a renewable energy. LNG as a processed form of natural gas is the fastest growing and cleanest form of fossil fuel. Recently, the unprecedented increased in LNG demand, pushes its exploration and processing into offshore as Floating LNG (FLNG). The offshore topsides gas processes and liquefaction has been identified as one of the great challenges of FLNG. Maintaining topside liquefaction process asset such as gas turbine is critical to profitability and reliability, availability of the process facilities. With the setbacks of widely used reactive and preventive time-based maintenances approaches, to meet the optimal reliability and availability requirements of oil and gas operators, this thesis presents a framework driven by AI-based learning approaches for predictive maintenance. The framework is aimed at leveraging the value of condition-based maintenance to minimises the failures and downtimes of critical FLNG equipment (Aeroderivative gas turbine). In this study, gas turbine thermodynamics were introduced, as well as some factors affecting gas turbine modelling. Some important considerations whilst modelling gas turbine system such as modelling objectives, modelling methods, as well as approaches in modelling gas turbines were investigated. These give basis and mathematical background to develop a gas turbine simulated model. The behaviour of simple cycle HDGT was simulated using thermodynamic laws and operational data based on Rowen model. Simulink model is created using experimental data based on Rowen’s model, which is aimed at exploring transient behaviour of an industrial gas turbine. The results show the capability of Simulink model in capture nonlinear dynamics of the gas turbine system, although constraint to be applied for further condition monitoring studies, due to lack of some suitable relevant correlated features required by the model. AI-based models were found to perform well in predicting gas turbines failures. These capabilities were investigated by this thesis and validated using an experimental data obtained from gas turbine engine facility. The dynamic behaviours gas turbines changes when exposed to different varieties of fuel. A diagnostics-based AI models were developed to diagnose different gas turbine engine’s failures associated with exposure to various types of fuels. The capabilities of Principal Component Analysis (PCA) technique have been harnessed to reduce the dimensionality of the dataset and extract good features for the diagnostics model development. Signal processing-based (time-domain, frequency domain, time-frequency domain) techniques have also been used as feature extraction tools, and significantly added more correlations to the dataset and influences the prediction results obtained. Signal processing played a vital role in extracting good features for the diagnostic models when compared PCA. The overall results obtained from both PCA, and signal processing-based models demonstrated the capabilities of neural network-based models in predicting gas turbine’s failures. Further, deep learning-based LSTM model have been developed, which extract features from the time series dataset directly, and hence does not require any feature extraction tool. The LSTM model achieved the highest performance and prediction accuracy, compared to both PCA-based and signal processing-based the models. In summary, it is concluded from this thesis that despite some challenges related to gas turbines Simulink Model for not being integrated fully for gas turbine condition monitoring studies, yet data-driven models have proven strong potentials and excellent performances on gas turbine’s CBM diagnostics. The models developed in this thesis can be used for design and manufacturing purposes on gas turbines applied to FLNG, especially on condition monitoring and fault detection of gas turbines. The result obtained would provide valuable understanding and helpful guidance for researchers and practitioners to implement robust predictive maintenance models that will enhance the reliability and availability of FLNG critical equipment.Petroleum Technology Development Funds (PTDF) Nigeri

    Towards a non-equilibrium thermodynamic theory of ecosystem assembly and development

    Get PDF
    Non-equilibrium thermodynamics has had a significant historic influence on the development of theoretical ecology, even informing the very concept of an ecosystem. Much of this influence has manifested as proposed extremal principles. These principles hold that systems will tend to maximise certain thermodynamic quantities, subject to the other constraints they operate under. A particularly notable extremal principle is the maximum entropy production principle (MaxEPP); that systems maximise their rate of entropy production. However, these principles are not robustly based in physical theory, and suffer from treating complex ecosystems in an extremely coarse manner. To address this gap, this thesis derives a limited but physically justified extremal principle, as well as carrying out a detailed investigation of the impact of non-equilibrium thermodynamic constraints on the assembly of microbial communities. The extremal principle we obtain pertains to the switching between states in simple bistable systems, with switching paths that generate more entropy being favoured. Our detailed investigation into microbial communities involved developing a novel thermodynamic microbial community model, using which we found the rate of ecosystem development to be set by the availability of free-energy. Further investigation was carried out using this model, demonstrating the way that trade-offs emerging from fundamental thermodynamic constraints impact the dynamics of assembling microbial communities. Taken together our results demonstrate that theory can be developed from non-equilibrium thermodynamics, that is both ecologically relevant and physically well grounded. We find that broad extremal principles are unlikely to be obtained, absent significant advances in the field of stochastic thermodynamics, limiting their applicability to ecology. However, we find that detailed consideration of the non-equilibrium thermodynamic mechanisms that impact microbial communities can broaden our understanding of their assembly and functioning.Open Acces

    Optical coherence tomography methods using 2-D detector arrays

    Get PDF
    Optical coherence tomography (OCT) is a non-invasive, non-contact optical technique that allows cross-section imaging of biological tissues with high spatial resolution, high sensitivity and high dynamic range. Standard OCT uses a focused beam to illuminate a point on the target and detects the signal using a single photodetector. To acquire transverse information, transversal scanning of the illumination point is required. Alternatively, multiple OCT channels can be operated in parallel simultaneously; parallel OCT signals are recorded by a two-dimensional (2D) detector array. This approach is known as Parallel-detection OCT. In this thesis, methods, experiments and results using three parallel OCT techniques, including full -field (time-domain) OCT (FF-OCT), full-field swept-source OCT (FF-SS-OCT) and line-field Fourier-domain OCT (LF-FD-OCT), are presented. Several 2D digital cameras of different formats have been used and evaluated in the experiments of different methods. With the LF-FD-OCT method, photography equipment, such as flashtubes and commercial DSLR cameras have been equipped and tested for OCT imaging. The techniques used in FF-OCT and FF-SS-OCT are employed in a novel wavefront sensing technique, which combines OCT methods with a Shack-Hartmann wavefront sensor (SH-WFS). This combination technique is demonstrated capable of measuring depth-resolved wavefront aberrations, which has the potential to extend the applications of SH-WFS in wavefront-guided biomedical imaging techniques

    Coupled heat-mass transport modelling of radionuclide migration from a nuclear waste disposal borehole

    Get PDF
    Disposal of radioactive waste originating from reprocessing of spent research reactor fuel typically includes stainless steel canisters with waste immobilised in a glass matrix. In a deep borehole disposal concept, waste packages could be stacked in a disposal zone at a depth of one to potentially several kilometres. This waste will generate heat for several hundreds of years. The influence of combining a natural geothermal gradient with heat from decaying nuclear waste on radionuclide transport from deep disposal boreholes is studied by implementing a coupled heat-solute mass transport modelling framework, subjected to depth-dependent temperature, pressure, and viscosity profiles. Several scenarios of waste-driven heat loads were investigated to test to what degree, if any, the additional heat affects radionuclide migration by generating convection-driven transport. Results show that the heat output and the calculated radioactivity at a hypothetical near-surface observation point are directly correlated; however, the overall impact of convection-driven transport is small due to the short duration (a few hundred years) of the heat load. Results further showed that the calculated radiation dose at the observation point was very sensitive to the magnitude of the effective diffusion parameter of the host rock. Coupled heat-solute mass transport models are necessary tools to identify influential processes regarding deep borehole disposal of heat-generating long-lived radioactive waste

    Enabling Mobility for Persons with Major Lower-Limb Amputations: A Model-based Study of the Impact of Digital Prosthetics Service Provision on Mobility Outcomes

    Get PDF
    Revised version. Minor formatting errors corrected.The World Health Organization has predicted a doubling in the global population for persons with amputation by 2050 because of steady population growth, ageing populations, and climbing rates chronic conditions such as peripheral arterial disease and diabetes mellitus. Without proper and timely prosthetic interventions, amputees with major lower-limb loss experience adverse mobility outcomes, including the loss of independence, lowered quality of life, and decreased life expectancy. Yet, a vast majority of amputees still do not have access to prosthetic services given the present capacity constraints, lack of proximity to services, high costs and poor healthcare coverage. Today, the entry of digital technology to the prosthetics services industry (e.g., 3D-printed sockets) is touted to be a plausible solution to this problem. This thesis aims to assess the impact of digital prosthetics on the amputee mobility outcomes – specifically, the proportion of amputees who successfully regain mobility from using a prosthesis and the health-economic consequences of such mobility. Using the system dynamics approach, this study presents a computational simulation model ¬– representing the patient-care continuum and digital prosthetics system – that provides a feedback-rich causal theory of how digital prosthetics impacts amputee mobility outcomes over time. In general, this study has found that with sufficient resources for market formation and capacity expansion for digital prosthetics services, substantial improvements to mobility outcomes for amputees can be expected. In doing so, it serves as proof-of-concept for the viability of scaling digital prosthetics for enabling mobility and bolstering the social impact of providing a prosthesis. Based on the high-leverage policy levers found in the system, this study further discusses the model-based insights that could inform policy design for alleviating the barriers to access and enhancing the health-economic outcomes of prosthetics care.Master's Thesis in System DynamicsGEO-SD351INTL-KMDINTL-MEDINTL-SVINTL-JUSINTL-HFINTL-PSYKINTL-MNMASV-SYSD
    • …
    corecore