232,222 research outputs found

    Probabilistic Linear Solvers: A Unifying View

    Full text link
    Several recent works have developed a new, probabilistic interpretation for numerical algorithms solving linear systems in which the solution is inferred in a Bayesian framework, either directly or by inferring the unknown action of the matrix inverse. These approaches have typically focused on replicating the behavior of the conjugate gradient method as a prototypical iterative method. In this work surprisingly general conditions for equivalence of these disparate methods are presented. We also describe connections between probabilistic linear solvers and projection methods for linear systems, providing a probabilistic interpretation of a far more general class of iterative methods. In particular, this provides such an interpretation of the generalised minimum residual method. A probabilistic view of preconditioning is also introduced. These developments unify the literature on probabilistic linear solvers, and provide foundational connections to the literature on iterative solvers for linear systems

    Quantization in Control Systems and Forward Error Analysis of Iterative Numerical Algorithms

    Get PDF
    The use of control theory to study iterative algorithms, which can be considered as dynamical systems, opens many opportunities to find new tools for analysis of algorithms. In this paper we show that results from the study of quantization effects in control systems can be used to find systematic ways for forward error analysis of iterative algorithms. The proposed schemes are applied to the classical iterative methods for solving a system of linear equations. The obtained bounds are compared with bounds given in the numerical analysis literature
    • …
    corecore