884 research outputs found

    Vector least-squares solutions for coupled singular matrix equations

    Get PDF
    The weighted least-squares solutions of coupled singular matrix equations are too difficult to obtain by applying matrices decomposition. In this paper, a family of algorithms are applied to solve these problems based on the Kronecker structures. Subsequently, we construct a computationally efficient solutions of coupled restricted singular matrix equations. Furthermore, the need to compute the weighted Drazin and weighted Moore-Penrose inverses; and the use of Tian's work and Lev-Ari's results are due to appearance in the solutions of these problems. The several special cases of these problems are also considered which includes the well-known coupled Sylvester matrix equations. Finally, we recover the iterative methods to the weighted case in order to obtain the minimum D-norm G-vector least-squares solutions for the coupled Sylvester matrix equations and the results lead to the least-squares solutions and invertible solutions, as a special case. © 2006 Elsevier B.V. All rights reserved

    Finite iterative algorithms for solving generalized coupled Sylvester systems – Part I: One-sided and generalized coupled Sylvester matrix equations over generalized reflexive solutions

    Get PDF
    AbstractThe generalized coupled Sylvester systems play a fundamental role in wide applications in several areas, such as stability theory, control theory, perturbation analysis, and some other fields of pure and applied mathematics. The iterative method is an important way to solve the generalized coupled Sylvester systems. In this two-part article, finite iterative methods are proposed for solving one-sided (or two-sided) and generalized coupled Sylvester matrix equations and the corresponding optimal approximation problem over generalized reflexive solutions (or reflexive solutions). In part I, an iterative algorithm is constructed to solve one-sided and coupled Sylvester matrix equations (AY−ZB,CY−ZD)=(E,F) over generalized reflexive matrices Y and Z. When the matrix equations are consistent, for any initial generalized reflexive matrix pair [Y1,Z1], the generalized reflexive solutions can be obtained by the iterative algorithm within finite iterative steps in the absence of round-off errors, and the least Frobenius norm generalized reflexive solution pair can be obtained by choosing a special kind of initial matrix pair. The unique optimal approximation generalized reflexive solution pair [Y^,Z^] to a given matrix pair [Y0,Z0] in Frobenius norm can be derived by finding the least-norm generalized reflexive solution pair [Y∼∗,Z∼∗] of two new corresponding generalized coupled Sylvester matrix equations (AY∼-Z∼B,CY∼-Z∼D)=(E∼,F∼), where E∼=E-AY0+Z0B,F∼=F-CY0+Z0D. Several numerical examples are given to show the effectiveness of the presented iterative algorithm

    Positive Definite Solutions of the Nonlinear Matrix Equation X+AHXˉ1A=IX+A^{\mathrm{H}}\bar{X}^{-1}A=I

    Get PDF
    This paper is concerned with the positive definite solutions to the matrix equation X+AHXˉ1A=IX+A^{\mathrm{H}}\bar{X}^{-1}A=I where XX is the unknown and AA is a given complex matrix. By introducing and studying a matrix operator on complex matrices, it is shown that the existence of positive definite solutions of this class of nonlinear matrix equations is equivalent to the existence of positive definite solutions of the nonlinear matrix equation W+BTW1B=IW+B^{\mathrm{T}}W^{-1}B=I which has been extensively studied in the literature, where BB is a real matrix and is uniquely determined by A.A. It is also shown that if the considered nonlinear matrix equation has a positive definite solution, then it has the maximal and minimal solutions. Bounds of the positive definite solutions are also established in terms of matrix AA. Finally some sufficient conditions and necessary conditions for the existence of positive definite solutions of the equations are also proposed

    Least Squares Based Iterative Algorithm for the Coupled Sylvester Matrix Equations

    Get PDF
    By analyzing the eigenvalues of the related matrices, the convergence analysis of the least squares based iteration is given for solving the coupled Sylvester equations AX+YB=C and DX+YE=F in this paper. The analysis shows that the optimal convergence factor of this iterative algorithm is 1. In addition, the proposed iterative algorithm can solve the generalized Sylvester equation AXB+CXD=F. The analysis demonstrates that if the matrix equation has a unique solution then the least squares based iterative solution converges to the exact solution for any initial values. A numerical example illustrates the effectiveness of the proposed algorithm

    Gradient based iterative solutions for general linear matrix equations

    Get PDF
    AbstractIn this paper, we present a gradient based iterative algorithm for solving general linear matrix equations by extending the Jacobi iteration and by applying the hierarchical identification principle. Convergence analysis indicates that the iterative solutions always converge fast to the exact solutions for any initial values and small condition numbers of the associated matrices. Two numerical examples are provided to show that the proposed algorithm is effective

    Nonlinear maximum likelihood estimation of autoregressive time series

    Get PDF
    Includes bibliographical references.In this paper, we describe an algorithm for finding the exact, nonlinear, maximum likelihood (ML) estimators for the parameters of an autoregressive time series. We demonstrate that the ML normal equations can be written as an interdependent set of cubic and quadratic equations in the AR polynomial coefficients. We present an algorithm that algebraically solves this set of nonlinear equations for low-order problems. For high-order problems, we describe iterative algorithms for obtaining a ML solution.This work was supported by Bonneville Power Administration under Contract #DEBI7990BPO7346 and by the Office of Naval Research, Statistics and Probability Branch, under Contract N00014-89-J-1070
    corecore