20 research outputs found

    Extremum seeking control for soft landing of an electromechanical valve actuator,

    Get PDF
    Abstract Many electromagnetic actuators su er from high velocity impacts. One such actuator is the electromechanical valve actuator, recently receiving attention for enabling variable valve timing in internal combustion engines. Impacts experienced by the actuator are excessively loud and create unnecessary wear. This paper presents an extremum seeking controller designed to reduce the magnitude of these impacts. Based on a measure of the sound intensity at impact, the controller tunes a nonlinear feedback to achieve impact velocities of less than 0:1 m=s while maintaining transition times of less than 4:0 ms. The control strategy is implemented with an eddy current sensor, to measure the valve position, and a microphone.

    Next generation automotive embedded systems-on-chip and their applications

    Get PDF
    It is a well known fact in the automotive industry that critical and costly delays in the development cycle of powertrain1 controllers are unavoidable due to the complex nature of the systems-on-chip used in them. The primary goal of this portfolio is to show the development of new methodologies for the fast and efficient implementation of next generation powertrain applications and the associated automotive qualified systems-on-chip. A general guideline for rapid automotive applications development, promoting the integration of state-of-the-art tools and techniques necessary, is presented. The methods developed in this portfolio demonstrate a new and better approach to co-design of automotive systems that also raises the level of design abstraction.An integrated business plan for the development of a camless engine controller platform is presented. The plan provides details for the marketing plan, management and financial data.A comprehensive real-time system level development methodology for the implementation of an electromagnetic actuator based camless internal combustion engine is developed. The proposed development platform enables developers to complete complex software and hardware development before moving to silicon, significantly shortening the development cycle and improving confidence in the design.A novel high performance internal combustion engine knock processing strategy using the next generation automotive system-on-chip, particularly highlighting the capabilities of the first-of-its-kind single-instruction-multiple-data micro-architecture is presented. A patent application has been filed for the methodology and the details of the invention are also presented.Enhancements required for the performance optimisation of several resource properties such as memory accesses, energy consumption and execution time of embedded powertrain applications running on the developed system-on-chip and its next generation of devices is proposed. The approach used allows the replacement of various software segments by hardware units to speed up processing.1 Powertrain: A name applied to the group of components used to transmit engine power to the driving wheels. It can consist of engine, clutch, transmission, universal joints, drive shaft, differential gear, and axle shafts

    Probability-Based Optimal Control Design for Soft Landing of Short-Stroke Actuators

    Get PDF
    The impact forces during switching operations of short-stroke actuators may cause bouncing, audible noise, and mechanical wear. The application of soft-landing control strategies to these devices aims at minimizing the impact velocities of their moving components to ultimately improve their lifetime and performance. In this brief, a novel approach for soft-landing trajectory planning, including probability functions, is proposed for optimal control of the actuators. The main contribution of the proposal is that it considers the uncertainty in the contact position, and hence, the obtained trajectories are more robust against system uncertainties. The problem is formulated as an optimal control problem and transformed into a two-point boundary value problem for its numerical resolution. Simulated and experimental tests have been performed using a dynamic model and a commercial short-stroke solenoid valve. The results show a significant improvement in the expected velocities and accelerations at contact with respect to past solutions in which the contact position is assumed to be perfectly known

    Design of a 3-Stage Voltage Controller for EMV Actuation in SI Engines

    Get PDF
    Variable valve timing (VVT) provides SI engines several significant benefits in fuel economy, exhaust emission, and engine performance. Among all VVT mechanisms, electromagnetic valve (EMV) is a positive one by providing very high flexibility in valve timings and possibility of cylinder-by-cylinder VVT control. This paper presents a simple 3-stage voltage control method for EMV actuation to effectively reduce the contact velocity between EMV and valve seat. A voltage pattern for EMV actuation is derived first by a fuzzy logic controller. Then, this pattern is simplified into 3 level voltage in which the voltage magnitude and duration are analyzed and optimized. Simulation results show that the 3-stage voltage controller offers simple control algorithms and acceptable performance with low impact velocity

    Current versus flux in the control of electromechanical valve actuators

    Get PDF
    Abstract-Due to a lack of bandwidth separation, it is unclear which combination of feedback signals would be most advantageous for controlling electromechanical valve actuators. To address this issue, this paper investigates the use of position, current, and flux measurements in the feedback. Based on the analysis, a combination of position and flux best achieves the design specifications without incurring large control signals

    Rauch-Tung-Striebel Smoother for Position Estimation of Short-Stroke Reluctance Actuators

    Get PDF
    This article presents a novel state estimator for short-stroke reluctance actuators, intended for soft-landing control applications in which the position cannot be measured in real time. One of the most important contributions regards the system modeling for the estimator. The discrete state of the hybrid system is treated as an input. Moreover, the model is simplified to facilitate the identification of parameters and the implementation of the estimator. Thus, auxiliary variables are added to the state vector in order to indirectly account for modeling errors. Another important contribution is the state estimation approach. It is based on the Rauch–Tung–Striebel fixed-interval smoother, which allows refining past data from later observations. Numerous simulations are performed to analyze and compare the proposal and several alternatives. In addition, experimental testing is presented to evaluate and validate the estimator. As the simulated and experimental analyses demonstrate, the combined effect of the novel additions results in significantly smaller estimation errors of position and velocity

    Modeling and Control of Reluctance Actuators

    Get PDF
    Los actuadores de reluctancia son dispositivos que se caracterizan por una elevada densidad de fuerza, buena eficiencia, gran tolerancia frente a fallos y un coste reducido. Estas características hacen que estén siendo considerados como una alternativa muy prometedora frente a otro tipo de actuadores electromagnéticos en ciertas aplicaciones que requieren gran velocidad y precisión. Por otro lado, los actuadores de reluctancia también son la solución ideal para algunos dispositivos electromecánicos que requieren unas prestaciones modestas, lo cual es debido principalmente a que son compactos, tienen un bajo coste y consumen relativamente poco. En concreto, los relés electromecánicos y las válvulas de solenoide son dispositivos cuya operación está basada en la fuerza creada por un pequeño actuador de reluctancia.A pesar de sus ventajas, los actuadores de reluctancia son sistemas complejos cuya dinámica es no lineal. Una de sus características más distintivas es que la fuerza magnética que provoca el movimiento es siempre de atracción y, además, depende fuertemente de la posición de la armadura. Básicamente, el comportamiento de esta fuerza es lo que explica que dispositivos como los relés y las electroválvulas sufran fuertes impactos y desgaste cada vez que son activados. Adicionalmente, algunos fenómenos electromagnéticos como la histéresis magnética o las corrientes inducidas hacen que el modelado dinámico de los actuadores de reluctancia sea bastante complejo. El trabajo realizado en esta tesis doctoral está enfocado en estudiar las posibilidades que ofrecen estos actuadores y, en concreto, en analizar el comportamiento dinámico y proponer algoritmos de estimación y control para relés electromecánicos y válvulas de solenoide.El primer objetivo de la investigación es el desarrollo de modelos dinámicos para actuadores de reluctancia, es decir, modelos de orden reducido que puedan ser utilizados para realizar simulaciones transitorias lo más precisas posibles con un bajo coste computacional. Para ello, lo primero que se ha estudiado es el comportamiento electromagnético de estos sistemas. El método de modelado más usado en la tesis es el de los circuitos magnéticos equivalentes (MEC, por sus siglas en inglés). No obstante, también se han realizado algunas simulaciones con modelos de elementos _nitos, en concreto para validar las aproximaciones del método MEC o para calcular la reluctancia del entrehierro. Se han estudiado los principales fenómenos electromagnéticos que aparecen en los actuadores de reluctancia, lo que ha llevado a la obtención de expresiones analíticas para modelar la dispersión de flujo, las corrientes inducidas y la saturación e histéresis magnéticas. Por otra parte, la expresión de la fuerza magnética que produce el movimiento se ha obtenido mediante un balance energético del sistema.El movimiento de la armadura también se ha estudiado en la tesis. Dado que los actuadores de reluctancia tienen generalmente un recorrido físicamente acotado, se han propuesto dos técnicas diferentes que permiten modelar los límites del movimiento y los rebotes de la armadura. Una vez estudiado el movimiento, el modelo mecánico se ha combinado con las ecuaciones electromagnéticas para poder analizar el comportamiento dinámico del actuador en su conjunto. Se han desarrollado cinco modelos dinámicos distintos, desde el más sencillo posible hasta uno que incluye todos los fenómenos electromagnéticos citados con anterioridad, y posteriormente se han comparado teniendo en cuenta su precisión y coste computacional.Las medidas experimentales son fundamentales a la hora de analizar y caracterizar cualquier sistema dinámico. Por ello, otro de los objetivos de la tesis ha sido la evaluación de distintas técnicas de medida que pudieran ayudar a mejorar la comprensión sobre el comportamiento dinámico de los actuadores de reluctancia y, en caso de que fuera posible, formar parte de un bucle de control realimentado. En este sentido, se ha intentado grabar el movimiento de uno de los dispositivos estudiados mediante tres instrumentos ópticos distintos. Los resultados indican que, a pesar de que en ciertas situaciones sí sería posible medir la trayectoria del dispositivo durante su movimiento, ninguno de los instrumentos podría aplicarse en la práctica por su baja flexibilidad y alto coste. Por este motivo, también se ha explorado el uso de otras variables que puedan ser medidas mucho más fácilmente.Otra parte importante de la investigación ha estado centrada en técnicas de estimación. Se han desarrollado dos algoritmos que son capaces de estimar, en tiempo real, el flujo magnético, la resistencia y la inductancia de un actuador dado. Los algoritmos utilizan únicamente medidas de tensión y corriente, lo cual representa una clara ventaja ya que no se necesita utilizar sensores o equipamiento añadido. Las prestaciones de ambos estimadores han sido analizadas mediante simulación y experimentos reales. El problema de estimar la posición de la armadura también se ha abordado en la tesis. En concreto, se ha prestado especial atención en resaltar los efectos que la histéresis magnética produce en la estimación, algo que no había sido estudiado con anterioridad.Finalmente, se han propuesto distintas técnicas de control para actuadores de reluctancia. En concreto, el objetivo principal es lograr que estos sigan un movimiento con aterrizaje suave, es decir, un movimiento que no dé lugar a impactos o rebotes. Como un primer paso, se han estudiado las propiedades básicas de los sistemas de control, es decir, la estabilidad, controlabilidad y observabilidad. Después se ha explorado la técnica de linealización por realimentación como un posible método para diseñar un bucle de control realimentado para la trayectoria de la armadura. Los resultados obtenidos demuestran que el control por realimentación es capaz de controlar el movimiento con gran precisión, siempre y cuando haya disponibles medidas o estimaciones precisas de la posición en tiempo real. Como esta situación es difícil que se dé en la práctica, se ha estudiado el uso de técnicas de control óptimo en bucle abierto para aquellos casos en los que la posición de la armadura no se pueda obtener. En particular, se han obtenido distintas soluciones tiempo óptimo y de energía óptima para un actuador nominal y, posteriormente, se ha analizado su robustez utilizando un método de Montecarlo.Como alternativa a los métodos clásicos, se ha estudiado la aplicabilidad de los métodos Run-to-Run (R2R) en actuadores de relutancia. Estas técnicas están diseñadas específicamente para sistemas que realizan un proceso repetitivo y, por lo tanto, son idóneas para dispositivos como los relés y las válvulas. En concreto, los métodos R2R implícitos se basan en la idea de construir una función que evalúe el desempeño del sistema al final de cada repetición. De esta forma, es posible mejorar el comportamiento dinámico del actuador a lo largo de las repeticiones utilizando un algoritmo de búsqueda.Las posibilidades para diseñar un controlador R2R son prácticamente infinitas, así que en la tesis se dan consejos prácticos sobre cómo elegir y parametrizar la señal de entrada, cómo usar las medidas disponibles para evaluar el comportamiento del sistema o cómo comparar distintos algoritmos de búsqueda. Los experimentos realizados demuestran que el algoritmo R2R diseñado es capaz de mejorar enormemente el comportamiento de un relé electromecánico y que, después de unos pocos ciclos, ,los resultados son incluso mejores que con cualquier estrategia presente en la literatura.Reluctance actuators are characterized by having a high force density, good efficiency, high fault tolerance and reduced cost. These features make them a promising alternative to other electromagnetic actuators for high-speed and high-precision applications. In addition, reluctance actuators are also ideal for small switch-type devices that require a modest performance because of their compactness, low cost, reduced mass and low energy dissipation. In particular, electromechanical switches and solenoid valves are devices whose operation is based on the force created by a small reluctance actuator. Despite their advantages, reluctance actuators are systems with highly nonlinear dynamics. One of their most distinctive features is that the magnetic force that produces the motion is always attractive and varies greatly with the position of the armature. In essence, the nature of this force explains why switch-type devices like relays and valves are subject to strong impacts and wear each time they are operated. In addition to that, electromagnetic phenomena such as magnetic hysteresis and eddy currents make the dynamic modeling of reluctance actuators even more difficult. The work of this thesis aims to investigate the capabilities of reluctance actuators and, in particular, to analyze the dynamic behavior and propose estimation and control algorithms for electromechanical switches and solenoid valves. The first objective of the investigation is the development of control-oriented dynamical models for reluctance actuators, i.e., low-order models that can be used to perform accurate transient simulations with low computational requirements. For that, the electromagnetic behavior of these systems is firstly studied. The magnetic equivalent circuit (MEC) methodology is selected as the primary modeling technique. Simulations from finite element models are also used for some specific purposes, e.g., to verify the assumptions of the MEC approach or to calculate the reluctance of the air gap. Then, the main electromagnetic phenomena that occur in reluctance actuators are studied. Analytic expressions are derived to model magnetic saturation, hysteresis, flux fringing and eddy currents, and an energy balance is used to obtain the expression for the magnetic force that produces the motion. After that, the motion of the armature is incorporated to the analysis. Given that reluctance actuators usually have a limited range of motion, two different techniques are proposed to model the limits of the armature stroke and the bouncing phenomenon. Then, the electromagnetic equations and the mechanical models are combined to describe the overall dynamic behavior of the actuator. Five different dynamical models are presented, ranging from a computationally inexpensive structure to a comprehensive model that includes saturation, hysteresis, eddy currents and flux fringing. The models are compared in terms of accuracy and computational requirements. Measurements play an important role in the analysis and characterization of dynamical systems. Thus, another objective of this thesis is the evaluation of different measurement methodologies that may improve the understanding of the dynamic behavior of reluctance actuators and, if possible, be used as part of a feedback controller. In this regard, three optical instruments are explored in order to record the motion of switch-type actuators. The results show that, even though in some cases it is possible to measure the position of several components of the device, none of the instruments could be applied in a practical situation due to their low flexibility and high cost. For that reason, other variables that are much more easily obtainable are also explored. Another significant part of the research is devoted to estimation in reluctance actuators. Two different algorithms are proposed to estimate the magnetic flux, the resistance and the inductance of the device, both of which can be implemented in real time. The algorithms rely only on measurements of the coil voltage and current, which represents a clear advantage because no additional hardware is required. Simulation and experiments are presented to show the performance of the estimators. Furthermore, the estimation of the armature position is also investigated in this work. In particular, special focus is put on highlighting the effects of magnetic hysteresis on the performance of different estimation approaches. Control strategies are then proposed to achieve soft landing in reluctance actuators, i.e., a controlled motion without impacts or bounces. As a first step, the basic properties of control systems theory---stability, controllability and stability---are investigated for a nominal actuator. Then, feedback linearization is explored as a method to design a trajectory tracking controller for the armature position. The obtained results show that soft landing can be accomplished by means of feedback control provided that accurate measurements or estimates of the position are available. Since this situation is rare in practice, open-loop optimal control is proposed as an alternative technique when the position is not accessible. Different time-optimal and energy-optimal solutions are derived for a nominal actuator and then compared in terms of robustness using a Monte Carlo analysis. Finally, Run-to-Run (R2R) control is explored as another method that may be used to improve the performance of reluctance actuators. These techniques are specifically designed for systems that perform a repetitive operation and, hence, they are very well suited to being applied to switch-type devices. In particular, implicit R2R methods are based on the idea of building a function that evaluates the performance of the system at the end of each repetition. In this way, the dynamic behavior of the actuator can be gradually improved along the repetitions by conducting a black-box search. Considering that the possibilities to design a R2R controller are almost endless, practical advice is given on how to select and parameterize the input profile, how to use measurements to evaluate the system performance and how to compare different search algorithms. The performed experiments show that the designed R2R controller is able to improve greatly the behavior of a switch-type device and that, after a few cycles, it outperforms other methodologies in the literature.<br /

    Modeling, System Identification, and Control of Electromagnetic Actuators

    Get PDF
    This chapter is dedicated to modeling, system identification, and control of electromagnetic actuators with the main focus on the actuators used in magnetic levitation, in fuel injection systems, and in variable valve timing (VVT). These actuators have a simple structure, good reliability, and low manufacturing costs. However, from control viewpoint, they are nonlinear systems and are open-loop unstable. Therefore, mathematical modeling, system identification-based parameter estimation, and control strategies are presented, when the moving armature is controlled around an equilibrium position or is controlled between the two extreme positions of the armature

    Soft-Landing Control of Short-Stroke Reluctance Actuators

    Get PDF
    Los actuadores de reluctancia se utilizan ampliamente debido a sus altas densidades de fuerza y baja disipación de calor. En particular, los actuadores de reluctancia simples de una sola bobina de carrera corta, como los relés electromecánicos y las electroválvulas, son la mejor opción para operaciones de conmutación de encendido y apagado en muchas aplicaciones debido a su bajo coste, tamaño y masa. Sin embargo, un inconveniente importante es el fuerte impacto al final de cada conmutación, que provoca rebotes, desgaste mecánico y ruido acústico. Son fenómenos muy indeseables que restan valor a las ventajas evidentes de estos actuadores y limitan su rango de aplicaciones potenciales.Esta tesis se centra en el desarrollo y estudio de soluciones de control de aterrizaje suave para actuadores de reluctancia de carrera corta, con el objetivo de minimizar sus velocidades de impacto. Es importante indicar que la eficiencia de dichos dispositivos se produce a costa de serios retos teóricos y prácticos en cuanto a su control, por ejemplo, dinámicas rápidas, híbridas y altamente no lineales, fenómenos electromagnéticos complejos, variabilidad entre unidades y falta de medidas de posición durante el movimiento.El punto de partida es la modelización del sistema, teniendo en cuenta sus subsistemas interconectados eléctricos, magnéticos y mecánicos. El objetivo principal de los modelos es servir para el desarrollo de métodos de control y estimación. Por lo tanto, se trata de modelos de parámetros concentrados expresados como representaciones del espacio de estados. Se especifican diferentes fenómenos electromagnéticos, con especial atención a la histéresis magnética. Se proponen dos tipos de modelos de diferente complejidad según se incorpore o se desprecie el fenómeno de la histéresis magnética.El primer enfoque para el control del aterrizaje suave es el diseño óptimo de las trayectorias de posición y sus correspondientes señales de entrada. La propuesta tiene en cuenta la incertidumbre en la posición del contacto y, por tanto, las soluciones obtenidas son más robustas. Mientras que las señales de entrada generadas son eficaces para las estrategias de control en lazo abierto, las trayectorias de posición generadas pueden utilizarse controles de prealimentación o de retroalimentación.Para mejorar la robustez de los controladores de lazo abierto, también proponemos una estrategia run-to-run que adapta iterativamente las señales de entrada. En concreto, está diseñada para trabajar conjuntamente con un controlador de prealimentación basado en las mencionadas trayectorias de posición construidas de forma óptima. Para el algoritmo de aprendizaje ciclo a ciclo, se elige una técnica de optimización, se ajusta y se compara con dos alternativas.Otro enfoque explorado es el control de retroalimentación para el seguimiento de trayectorias predefinidas de posición. La solución propuesta es un controlador estrictamente conmutativo en modo deslizante. Está enfocado en la simplicidad para facilitar su implementación, al tiempo que se tiene en cuenta la dinámica híbrida. Los análisis teóricos y simulados demuestran que el aterrizaje suave es posible con tasas de muestreo razonables.Los controladores de retroalimentación y otros controladores de seguimiento requieren mediciones o estimaciones precisas de la posición. Como la medición de la posición raramente es práctica, parte de la investigación se dedica al diseño de estimadores de estado. La principal propuesta es un suavizador Rauch-Tung-Striebel ampliado para sistemas no lineales, que incluye varias ideas nuevas relacionadas con el modelo discreto, las entradas y las salidas. Los análisis simulados demuestran que el efecto combinado de las nuevas adiciones da lugar a mucho mejores estimaciones de la posición.Reluctance actuators are widely used due to their high force densities and low heat dissipation. In particular, simple short-stroke single-coil reluctance actuators, such as electromechanical relays and solenoid valves, are the best choice for on-off switching operations in many applications because of their low cost, size and mass. However, a major drawback is the strong impact at the end of each commutation, which provokes bouncing, mechanical wear and acoustic noise. They are very undesirable phenomena that detract from the evident advantages of these actuators and limit their range of potential applications. This thesis focuses on the development and study of soft-landing control solutions for short-stroke reluctance actuators, aiming at minimizing their impact velocities. It is important to indicate that the efficiency of the aforementioned devices comes at the cost of serious theoretical and practical challenges regarding their control, e.g., fast, hybrid and highly nonlinear dynamics, complex electromagnetic phenomena, unit-to-unit variability and lack of position measurements during motion. The starting point is the system modeling, accounting for their interconnected electrical, magnetic and mechanical subsystems. The main purpose of the models is to be used for the development of control and estimation methods. Therefore, they are lumped-parameter models expressed as state-space representations. Different electromagnetic phenomena are specified, with special attention to the magnetic hysteresis. Two model types of different complexities are proposed depending on whether the magnetic hysteresis phenomenon is incorporated or neglected. The first approach for soft-landing control is the optimal design of position trajectories and their corresponding input signals. The proposal considers uncertainty in the contact position, and hence, the obtained solutions are more robust. While the generated input signals are effective for open-loop control strategies, the generated position trajectories can be used in feedforward or feedback control. In order to improve the robustness of open-loop controllers, we also propose a run-to-run strategy that iteratively adapts the input signals. Specifically, it is designed to work in conjunction with a feedforward controller based on the aforementioned optimally constructed position trajectories. For the cycle-to-cycle learning algorithm, an optimization technique is chosen, adjusted and compared to two alternatives. Another explored approach is feedback control for tracking predefined position trajectories. The proposed solution is a purely switching sliding-mode controller. The focus is on simplicity to facilitate its implementation, while also taking into account the hybrid dynamics. Theoretical and simulated analyses show that soft landing is achievable with reasonable sampling rates. Feedback and other tracking controllers require accurate measurements or position estimations. As measuring the position is rarely practical, part of the research is devoted to the design of state estimators. The main proposal is an extended Rauch–Tung–Striebel smoother, which includes several new ideas regarding the discrete model, the inputs and the outputs. Simulated analyses demonstrate that the combined effect of the novel additions results in much better position estimations.<br /
    corecore