292 research outputs found

    Resource-aware motion control:feedforward, learning, and feedback

    Get PDF
    Controllers with new sampling schemes improve motion systems’ performanc

    Docking control for probe-drogue refueling: An additive-state-decomposition-based output feedback iterative learning control method

    Get PDF
    Designing a controller for the docking maneuver in Probe-Drogue Refueling (PDR) is an important but challenging task, due to the complex system model and the high precision requirement. In order to overcome the disadvantage of only feedback control, a feedforward control scheme known as Iterative Learning Control (ILC) is adopted in this paper. First, Additive State Decomposition (ASD) is used to address the tight coupling of input saturation, nonlinearity and the property of NonMinimum Phase (NMP) by separating these features into two subsystems (a primary system and a secondary system). After system decomposition, an adjoint-type ILC is applied to the Linear Time-Invariant (LTI) primary system with NMP to achieve entire output trajectory tracking, whereas state feedback is used to stabilize the secondary system with input saturation. The two controllers designed for the two subsystems can be combined to achieve the original control goal of the PDR system. Furthermore, to compensate for the receiver-independent uncertainties, a correction action is proposed by using the terminal docking error, which can lead to a smaller docking error at the docking moment. Simulation tests have been carried out to demonstrate the performance of the proposed control method, which has some advantages over the traditional derivative-type ILC and adjoint-type ILC in the docking control of PDR

    Continuous-Time Reinforcement Learning: New Design Algorithms with Theoretical Insights and Performance Guarantees

    Full text link
    Continuous-time nonlinear optimal control problems hold great promise in real-world applications. After decades of development, reinforcement learning (RL) has achieved some of the greatest successes as a general nonlinear control design method. However, a recent comprehensive analysis of state-of-the-art continuous-time RL (CT-RL) methods, namely, adaptive dynamic programming (ADP)-based CT-RL algorithms, reveals they face significant design challenges due to their complexity, numerical conditioning, and dimensional scaling issues. Despite advanced theoretical results, existing ADP CT-RL synthesis methods are inadequate in solving even small, academic problems. The goal of this work is thus to introduce a suite of new CT-RL algorithms for control of affine nonlinear systems. Our design approach relies on two important factors. First, our methods are applicable to physical systems that can be partitioned into smaller subproblems. This constructive consideration results in reduced dimensionality and greatly improved intuitiveness of design. Second, we introduce a new excitation framework to improve persistence of excitation (PE) and numerical conditioning performance via classical input/output insights. Such a design-centric approach is the first of its kind in the ADP CT-RL community. In this paper, we progressively introduce a suite of (decentralized) excitable integral reinforcement learning (EIRL) algorithms. We provide convergence and closed-loop stability guarantees, and we demonstrate these guarantees on a significant application problem of controlling an unstable, nonminimum phase hypersonic vehicle (HSV)

    Blind deconvolution techniques and applications

    Get PDF

    Inversion-based feedforward-feedback control: theory and implementation to high-speed atomic force microscope imaging

    Get PDF
    In this dissertation, a suite of inversion-based feedforward-feedback control techniques are developed and applied to achieve high speed AFM imaging. In the last decade, great efforts have been made in developing the inversion-based feedforward control as an effective approach for precision output tracking. Such efforts are facilitated by the fruitful results obtained in the stable-inversion theory, including, mainly, the bounded inverse of nonminimum-phase systems, the preview-based inversion method that quantified the effect of the future desired trajectory on the inverse input, the consideration of the model uncertainties in the system inverse, and the integration of inversion with feedback and iterative control. However, challenges still exist in those inversion-based approaches. For example, although it has been shown that the inversion-based iterative control (IIC) technique can effectively compensate for the vibrational dynamics during the output tracking in the repetitive applications, however, compensating for both the hysteresis effect and the dynamics effect simultaneously using the IIC approach has not been established yet. Moreover, the current design of the inversion-based feedforward feedback two-degree-of-freedom (2DOF) controller is ad-hoc, and the minimization of the model uncertainty effects on the feedforward control has not been addressed. Furthermore, although it is possible to combine system inversion with both iterative learning and feedback control in the so-called current cycle feedback iterative learning control (CCF-ILC) approach, the current controller design is limited to be casual and the use of such CCF-ILC approach for rejecting slowly varying periodic disturbance has not been explored. These challenges, as magnified in applications such as high-speed AFM imaging, motivate the research of this dissertation. Particularly, it is shown that the IIC approach can effectively compensate for both the hysteresis and vibrational dynamics effects of smart actuators. The convergence of the IIC algorithm is investigated by capturing the input-output behavior of piezo actuators with a cascade model consisting of a rate-independent hysteresis at the input followed by the dynamics part of the system. The size of the hysteresis and the vibrational dynamics variations that can be compensated for (by using the IIC method) has been quantified. Secondly, a novel robust-inversion has been developed for single-input-single-output (SISO) LTI systems, which minimized the dynamics uncertainty effect and obtained a guaranteed tracking performance for bounded dynamics uncertainties. Based on the robust-inversion approach, a systematic design of inversion-based two-degree-of-freedom (2DOF)-control was developed. Finally, the robust inversion- based current cycle feedback iterative learning control approach was developed for the rejection of slow varying periodic disturbances. The proposed CCF-ILC controller design utilizes the recently-developed robust-inversion technique to minimize the model uncertainty effect on the feedforward control, as well as to remove the causality constraints in other CCFILC approaches. It is shown that the iterative law converges, and attains a bounded tracking error upon noise and disturbances. In this dissertation, these techniques have been successfully implemented to achieve high-speed AFM imaging of large-size samples. Specifically, it is shown that precision positioning of the probe in the AFM lateral (x-y) scanning can be successfully achieved by using the inversion-based iterative-control (IIC) techniques and robust-inversion based 2DOF control design approach. The AFM imaging speed as well as the sample estimation can be substantially improved by using the CCF-ILC approach for the precision positioning of the probe in the vertical direction

    Machine-In-The-Loop control optimization:a literature survey

    Get PDF

    Physics-guided neural networks for feedforward control with input-to-state stability guarantees

    Full text link
    Currently, there is an increasing interest in merging physics-based methods and artificial intelligence to push performance of feedforward controllers for high-precision mechatronics beyond what is achievable with linear feedforward control. In this paper, we develop a systematic design procedure for feedforward control using physics-guided neural networks (PGNNs) that can handle nonlinear and unknown dynamics. PGNNs effectively merge physics-based and NN-based models, and thereby result in nonlinear feedforward controllers with higher performance and the same reliability as classical, linear feedforward controllers. In particular, conditions are presented to validate (after training) and impose (before training) input-to-state stability (ISS) of PGNN feedforward controllers. The developed PGNN feedforward control framework is validated on a real-life, high-precision industrial linear motor used in lithography machines, where it reaches a factor 2 improvement with respect to conventional mass-friction feedforward

    Repetitive Control Meets Continuous Zero Phase Error Tracking Controller for Precise Tracking of B-spline Trajectories

    Get PDF
    In this paper, a novel repetitive control scheme is presented and discussed, based on the so-called B-spline filters. These dynamic filters are able to generate a B-spline trajectory if they are fed with the sequence of control points defining the curve. Therefore, they are ideal tools for generating online reference signals with the prescribed level of smoothness for driving dynamic systems, possibly together with a feedforward compensator. In particular, a Continuous Zero Phase Error Tracking Controller (ZPETC) can be used for tracking control of non-minimum phase systems but because of its open-loop nature it cannot guarantee the robustness with respect to modeling errors and exogenous disturbances. For this reason, ZPETC and trajectory generator have been embedded in a repetitive control scheme that allows to nullify interpolation errors even in non-ideal conditions, provided that the desired reference trajectory and the disturbances are periodic. Asymptotic stability of the overall control scheme is proved mathematically and experimental validation based on a non-minimum phase system is performed. Different models of the same physical system have been identified and used in the implementation of this model-based control scheme, allowing a real evaluation of the relationship between control system performance and model accuracy
    • …
    corecore