728 research outputs found

    Recursive search-based identification algorithms for the exponential autoregressive time series model with coloured noise

    Get PDF
    This study focuses on the recursive parameter estimation problems for the non-linear exponential autoregressive model with moving average noise (the ExpARMA model for short). By means of the gradient search, an extended stochastic gradient (ESG) algorithm is derived. Considering the difficulty of determining the step-size in the ESG algorithm, a numerical approach is proposed to obtain the optimal step-size. In order to improve the parameter estimation accuracy, the authors employ the multi-innovation identification theory to develop a multi-innovation ESG (MI-ESG) algorithm for the ExpARMA model. Introducing a forgetting factor into the MI-ESG algorithm, the parameter estimation accuracy can be further improved. With an appropriate innovation length and forgetting factor, the variant of the MI-ESG algorithm is effective to identify all the unknown parameters of the ExpARMA model. A simulation example is provided to test the proposed algorithms

    Gradient-based iterative parameter estimation for bilinear-in-parameter systems using the model decomposition technique

    Get PDF
    The parameter estimation issues of a block-oriented non-linear system that is bilinear in the parameters are studied, i.e. the bilinear-in-parameter system. Using the model decomposition technique, the bilinear-in-parameter model is decomposed into two fictitious submodels: one containing the unknown parameters in the non-linear block and the other containing the unknown parameters in the linear dynamic one and the noise model. Then a gradient-based iterative algorithm is proposed to estimate all the unknown parameters by formulating and minimising two criterion functions. The stochastic gradient algorithms are provided for comparison. The simulation results indicate that the proposed iterative algorithm can give higher parameter estimation accuracy than the stochastic gradient algorithms

    Data filtering-based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition

    Get PDF
    This paper focuses on the iterative identification problems for a class of Hammerstein nonlinear systems. By decomposing the system into two fictitious subsystems, a decomposition-based least squares iterative algorithm is presented for estimating the parameter vector in each subsystem. Moreover, a data filtering-based decomposition least squares iterative algorithm is proposed. The simulation results indicate that the data filtering-based least squares iterative algorithm can generate more accurate parameter estimates than the least squares iterative algorithm

    Parameter estimation algorithm for multivariable controlled autoregressive autoregressive moving average systems

    Get PDF
    This paper investigates parameter estimation problems for multivariable controlled autoregressive autoregressive moving average (M-CARARMA) systems. In order to improve the performance of the standard multivariable generalized extended stochastic gradient (M-GESG) algorithm, we derive a partially coupled generalized extended stochastic gradient algorithm by using the auxiliary model. In particular, we divide the identification model into several subsystems based on the hierarchical identification principle and estimate the parameters using the coupled relationship between these subsystems. The simulation results show that the new algorithm can give more accurate parameter estimates of the M-CARARMA system than the M-GESG algorithm

    Partially coupled gradient estimation algorithm for multivariable equation-error autoregressive moving average systems using the data filtering technique

    Get PDF
    System identification provides many convenient and useful methods for engineering modelling. This study targets the parameter identification problems for multivariable equation-error autoregressive moving average systems. To reduce the influence of the coloured noises on the parameter estimation, the data filtering technique is adopted to filter the input and output data, and to transform the original system into a filtered system with white noises. Then the filtered system is decomposed into several subsystems and a filtering-based partially-coupled generalised extended stochastic gradient algorithm is developed via the coupling concept. In contrast to the multivariable generalised extended stochastic gradient algorithm, the proposed algorithm can give more accurate parameter estimates. Finally, the effectiveness of the proposed algorithm is well demonstrated by simulation examples

    State estimation for bilinear systems through minimizing the covariance matrix of the state estimation errors

    Get PDF
    This paper considers the state estimation problem of bilinear systems in the presence of disturbances. The standard Kalman filter is recognized as the best state estimator for linear systems, but it is not applicable for bilinear systems. It is well known that the extended Kalman filter (EKF) is proposed based on the Taylor expansion to linearize the nonlinear model. In this paper, we show that the EKF method is not suitable for bilinear systems because the linearization method for bilinear systems cannot describe the behavior of the considered system. Therefore, this paper proposes a state filtering method for the single-input–single-output bilinear systems by minimizing the covariance matrix of the state estimation errors. Moreover, the state estimation algorithm is extended to multiple-input–multiple-output bilinear systems. The performance analysis indicates that the state estimates can track the true states. Finally, the numerical examples illustrate the specific performance of the proposed method

    Highly computationally efficient state filter based on the delta operator

    Get PDF
    The Kalman filter is not suitable for the state estimation of linear systems with multistate delays, and the extended state vector Kalman filtering algorithm results in heavy computational burden because of the large dimension of the state estimation covariance matrix. Thus, in this paper, we develop a novel state estimation algorithm for enhancing the computational efficiency based on the delta operator. The computation analysis and the simulation example show the performance of the proposed algorithm

    State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle

    Get PDF
    This study presents a combined parameter and state estimation algorithm for a bilinear system described by its observer canonical state-space model based on the hierarchical identification principle. The Kalman filter is known as the best state filter for linear systems, but not applicable for bilinear systems. Thus, a bilinear state observer (BSO) is designed to give the state estimates using the extremum principle. Then a BSO-based recursive least squares (BSO-RLS) algorithm is developed. For comparison with the BSO-RLS algorithm, by dividing the system into three fictitious subsystems on the basis of the decomposition–coordination principle, a BSO-based hierarchical least squares algorithm is proposed to reduce the computation burden. Moreover, a BSO-based forgetting factor recursive least squares algorithm is presented to improve the parameter tracking capability. Finally, a numerical example illustrates the effectiveness of the proposed algorithms

    The wavelet-NARMAX representation : a hybrid model structure combining polynomial models with multiresolution wavelet decompositions

    Get PDF
    A new hybrid model structure combing polynomial models with multiresolution wavelet decompositions is introduced for nonlinear system identification. Polynomial models play an important role in approximation theory, and have been extensively used in linear and nonlinear system identification. Wavelet decompositions, in which the basis functions have the property of localization in both time and frequency, outperform many other approximation schemes and offer a flexible solution for approximating arbitrary functions. Although wavelet representations can approximate even severe nonlinearities in a given signal very well, the advantage of these representations can be lost when wavelets are used to capture linear or low-order nonlinear behaviour in a signal. In order to sufficiently utilise the global property of polynomials and the local property of wavelet representations simultaneously, in this study polynomial models and wavelet decompositions are combined together in a parallel structure to represent nonlinear input-output systems. As a special form of the NARMAX model, this hybrid model structure will be referred to as the WAvelet-NARMAX model, or simply WANARMAX. Generally, such a WANARMAX representation for an input-output system might involve a large number of basis functions and therefore a great number of model terms. Experience reveals that only a small number of these model terms are significant to the system output. A new fast orthogonal least squares algorithm, called the matching pursuit orthogonal least squares (MPOLS) algorithm, is also introduced in this study to determine which terms should be included in the final model

    State filtering and parameter estimation for two input two output systems with time delay

    Get PDF
    This paper focuses on presenting a new identification algorithm to estimate the parameters and state variables for two-input two-output dynamic systems with time delay based on canonical state space models. First, the related input-output equation is determined and transformed into an identification oriented model, which does not involve in the unmeasurable states, and then a residual based least squares identification algorithm is presented for the estimations. After the parameters being estimated, the system states are subsequently estimated by using the estimated parameters. Through theoretical analysis, the convergence of the algorithm is derived to provide assurance for applicability. Finally, a selected simulation example is given for a meaningful case study to show the effectiveness of the proposed algorithm
    • …
    corecore