152 research outputs found

    Approximate inference in massive MIMO scenarios with moment matching techniques

    Get PDF
    Mención Internacional en el título de doctorThis Thesis explores low-complexity inference probabilistic algorithms in high-dimensional Multiple-Input Multiple-Output (MIMO) systems and high order M-Quadrature Amplitude Modulation (QAM) constellations. Several modern communications systems are using more and more antennas to maximize spectral efficiency, in a new phenomena call Massive MIMO. However, as the number of antennas and/or the order of the constellation grow several technical issues have to be tackled, one of them is that the symbol detection complexity grows fast exponentially with the system dimension. Nowadays the design of massive MIMO low-complexity receivers is one important research line in MIMO because symbol detection can no longer rely on conventional approaches such as Maximum a Posteriori (MAP) due to its exponential computation complexity. This Thesis proposes two main results. On one hand a hard decision low-complexity MIMO detector based on Expectation Propagation (EP) algorithm which allows to iteratively approximate within polynomial cost the posterior distribution of the transmitted symbols. The receiver is named Expectation Propagation Detector (EPD) and its solution evolves from Minimum Mean Square Error (MMSE) solution and keeps per iteration the MMSE complexity which is dominated by a matrix inversion. Hard decision Symbol Error Rate (SER) performance is shown to remarkably improve state-of-the-art solutions of similar complexity. On the other hand, a soft-inference algorithm, more suitable to modern communication systems with channel codification techniques such as Low- Density Parity-Check (LDPC) codes, is also presented. Modern channel decoding techniques need as input Log-Likehood Ratio (LLR) information for each coded bit. In order to obtain that information, firstly a soft bit inference procedure must be performed. In low-dimensional scenarios, this can be done by marginalization over the symbol posterior distribution. However, this is not feasible at high-dimension. While EPD could provide this probabilistic information, it is shown that its probabilistic estimates are in general poor in the low Signal-to-Noise Ratio (SNR) regime. In order to solve this inconvenience a new algorithm based on the Expectation Consistency (EC) algorithm, which generalizes several algorithms such as Belief. Propagation (BP) and EP itself, was proposed. The proposed algorithm called Expectation Consistency Detector (ECD) maps the inference problem as an optimization over a non convex function. This new approach allows to find stationary points and tradeoffs between accuracy and convergence, which leads to robust update rules. At the same complexity cost than EPD, the new proposal achieves a performance closer to channel capacity at moderate SNR. The result reveals that the probabilistic detection accuracy has a relevant impact in the achievable rate of the overall system. Finally, a modified ECD algorithm is presented, with a Turbo receiver structure where the output of the decoder is fed back to ECD, achieving performance gains in all block lengths simulated. The document is structured as follows. In Chapter I an introduction to the MIMO scenario is presented, the advantages and challenges are exposed and the two main scenarios of this Thesis are set forth. Finally, the motivation behind this work, and the contributions are revealed. In Chapters II and III the state of the art and our proposal are presented for Hard Detection, whereas in Chapters IV and V are exposed for Soft Inference Detection. Eventually, a conclusion and future lines can be found in Chapter VI.Esta Tesis aborda algoritmos de baja complejidad para la estimación probabilística en sistemas de Multiple-Input Multiple-Output (MIMO) de grandes dimensiones con constelaciones M-Quadrature Amplitude Modulation (QAM) de alta dimensionalidad. Son diversos los sistemas de comunicaciones que en la actualidad están utilizando más y más antenas para maximizar la eficiencia espectral, en un nuevo fenómeno denominado Massive MIMO. Sin embargo los incrementos en el número de antenas y/o orden de la constelación presentan ciertos desafíos tecnológicos que deben ser considerados. Uno de ellos es la detección de los símbolos transmitidos en el sistema debido a que la complejidad aumenta más rápido que las dimensiones del sistema. Por tanto el diseño receptores para sistemas Massive MIMO de baja complejidad es una de las importantes líneas de investigación en la actualidad en MIMO, debido principalmente a que los métodos tradicionales no se pueden implementar en sistemas con decenas de antenas, cuando lo deseable serían centenas, debido a que su coste es exponencial. Los principales resultados en esta Tesis pueden clasificarse en dos. En primer lugar un receptor MIMO para decisión dura de baja complejidad basado en el algoritmo Expectation Propagation (EP) que permite de manera iterativa, con un coste computacional polinómico por iteración, aproximar la distribución a posteriori de los símbolos transmitidos. El algoritmo, denominado Expectation Propagation Detector (EPD), es inicializado con la solución del algoritmo Minimum Mean Square Error (MMSE) y mantiene el coste de este para todas las iteraciones, dominado por una inversión de matriz. El rendimiento del decisor en probabilidad de error de símbolo muestra ganancias remarcables con respecto a otros métodos en la literatura con una complejidad similar. En segundo lugar, un algoritmo que provee una estimación blanda, información que es más apropiada para los actuales sistemas de comunicaciones que utilizan codificación de canal, como pueden ser códigos Low-Density Parity-Check (LDPC). La información necesaria para estos decodificadores de canal es Log-Likehood Ratio (LLR) para cada uno de los bits codificados. En escenarios de bajas dimensiones se pueden calcular las marginales de la distribución a posteriori, pero en escenarios de grandes dimensiones no es viable, aunque EPD puede proporcionar este tipo de información a la entrada del decodificador, dicha información no es la mejor al estar el algoritmo pensado para detección dura, sobre todo se observa este fenómeno en el rango de baja Signal-to-Noise Ratio (SNR). Para solucionar este problema se propone un nuevo algoritmo basado en Expectation Consistency (EC) que engloba diversos algoritmos como pueden ser Belief Propagation (BP) y el algoritmo EP propuesto con anterioridad. El nuevo algoritmo llamado Expectation Consistency Detector (ECD), trata el problema como una optimización de una función no convexa. Esta aproximación permite encontrar los puntos estacionarios y la relación entre precisión y convergencia, que permitirán reglas de actualización más robustas y eficaces. Con la misma compleja que el algoritmo propuesto inicialmente, ECD permite rendimientos más próximos a la capacidad del canal en regímenes moderados de SNR. Los resultados muestran que la precisión tiene un gran efecto en la tasa que alcanza el sistema. Finalmente una versión modificada de ECD es propuesta en una arquitectura típica de los Turbo receptores, en la que la salida del decodificador es la entrada del receptor, y que permite ganancias en el rendimiento en todas las longitudes de código simuladas. El presente documento está estructurado de la siguiente manera. En el primer Capítulo I, se realiza una introducción a los sistemas MIMO, presentando sus ventajas, desventajas, problemas abiertos. Los modelos que se utilizaran en la tesis y la motivación con la que se inició esta tesis son expuestos en este primer capítulo. En los Capítulos II y III el estado del arte y nuestra propuesta para detección dura son presentados, mientras que en los Capítulos IV y V se presentan para detección suave. Finalmente las conclusiones que pueden obtenerse de esta Tesis y futuras líneas de investigación son expuestas en el Capítulo VI.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Juan José Murillo Fuentes.- Secretario: Gonzalo Vázquez Vilar.- Vocal: María Isabel Valera Martíne

    Information Extraction and Modeling from Remote Sensing Images: Application to the Enhancement of Digital Elevation Models

    Get PDF
    To deal with high complexity data such as remote sensing images presenting metric resolution over large areas, an innovative, fast and robust image processing system is presented. The modeling of increasing level of information is used to extract, represent and link image features to semantic content. The potential of the proposed techniques is demonstrated with an application to enhance and regularize digital elevation models based on information collected from RS images

    Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the Human Brain

    Get PDF
    The inverse problem in Electro- and Magneto-EncephaloGraphy (EEG/MEG) aims at reconstructing the underlying current distribution in the human brain using potential differences and/or magnetic fluxes that are measured non-invasively directly, or at a close distance, from the head surface. The solution requires repeated computation of the forward problem, i.e., the simulation of EEG and MEG fields for a given dipolar source in the brain using a volume-conduction model of the head. The associated differential equations are derived from the Maxwell equations. Not only do various head tissues exhibit different conductivities, some of them are also anisotropic conductors as, e.g., skull and brain white matter. To our knowledge, previous work has not extensively investigated the impact of modeling tissue anisotropy on source reconstruction. Currently, there are no readily available methods that allow direct conductivity measurements. Furthermore, there is still a lack of sufficiently powerful software packages that would yield significant reduction of the computation time involved in such complex models hence satisfying the time-restrictions for the solution of the inverse problem. In this dissertation, techniques of multimodal Magnetic Resonance Imaging (MRI) are presented in order to generate high-resolution realistically shaped anisotropic volume conductor models. One focus is the presentation of an improved segmentation of the skull by means of a bimodal T1/PD-MRI approach. The eigenvectors of the conductivity tensors in anisotropic white matter are determined using whole head Diffusion-Tensor-MRI. The Finite Element (FE) method in combination with a parallel algebraic multigrid solver yields a highly efficient solution of the forward problem. After giving an overview of state-of-the-art inverse methods, new regularization concepts are presented. Next, the sensitivity of inverse methods to tissue anisotropy is tested. The results show that skull anisotropy affects significantly EEG source reconstruction whereas white matter anisotropy affects both EEG and MEG source reconstructions. Therefore, high-resolution FE forward modeling is crucial for an accurate solution of the inverse problem in EEG and MEG.Motivation und Einordnung: Seit nun fast drei Jahrzehnten werden im Bereich der Kognitionswissenschaften und in klinischer Forschung und Routine die Quellen elektrischer Aktivitaet im menschlichen Gehirn anhand ihrer ueber das Elektroenzephalogramm (EEG) an der Kopfoberflaeche gemessenen Potentialverteilung bzw. ihres ueber das Magnetoenzephalogramm (MEG) in einigen Zentimetern Entfernung davon gemessenen magnetischen Flusses rekonstruiert. Im Vergleich zu anderen funktionellen Bildgebungsmethoden wie z.B. die Positronen-Emissions-Tomographie (PET) oder die funktionelle Magnetresonanztomographie (fMRT) hat die EEG/MEG-Quellrekonstruktion den Vorteil einer sehr hohen zeitlichen Aufloesung. Die gemessene Aktivitaet ist das Resultat von Ionenbewegungen in aktivierten kortikalen Regionen des Gehirns, den sog. Primaerstroemen. Schon im Jahr 1949 wurden erstmals die Primaerstroeme ueber Stromdipole mathematisch modelliert. Der Primaerstrom erzeugt R\'uckstr\'ome im leitf\'ahigen Gewebe des Kopfes, die sog. {\em Sekund\'arstr\'ome}. Die Rekonstruktion der Dipolquellen wird das {\em EEG/MEG inverse Problem} genannt. Dessen L\'osung erfordert die wiederholte Berechnung des {\em Vorw\'arts\-problems}, d.h. der Simulation der EEG/MEG-Feldverteilung f\'ur eine gegebene Dipolquelle im Gehirn. Ein erstes Anwendungsgebiet f\/indet sich in der Diagnose und Therapie von pharma-resistenten Epilepsien, von denen ca. 0,25\% der Weltbev\'olkerung betroffen sind und f\'ur die sich in den letzten Jahrzehnten eine systematische chirurgische Behandlung ent\-wickelt hat. Voraussetzung f\'ur einen die restlichen Gehirnregionen schonenden chirurgischen Eingrif\/f ist die Kenntnis der Lage und Ausdehnung der epileptischen Zentren. Bisher wurden diese Charakteristika in den Patienten stark belastenden invasiven Untersuchungen wie zum Beispiel Subdural- oder Tiefen-Elektroden gewonnen. Die bioelektrischen Signale von Epilepsiekranken weisen zwischen den Anfallsereignissen sog. interiktale Spikes auf. Die nicht-invasive Messung des EEG/MEG dieser interiktalen Spikes und die anschlie{\ss}ende Berechnung des epileptischen Zentrums belastet den Patienten nicht. Ein weiteres Anwendungsfeld ist die pr\'aoperative Ermittlung der Lage wichtiger funk\-tio\-nell-zu\-sam\-men\-h\'angender Zentren im Gehirn, z.B.~des prim\'ar-mo\-to\-ri\-schen, des prim\'ar-au\-di\-to\-rischen oder prim\'ar-somatosensorischen Cortex. Bei Operationen in diesen Bereichen (z.B.~Tumoroperationen) k\'onnten L\'ahmungen, H\'or- und Sensibilit\'atsst\'orungen vermieden werden. Dazu werden \'uber akustische oder sensorische Reize charakteristische Signale evoziert und \'uber Summationstechniken sichtbar gemacht. Durch das L\'osen des inversen Problems wird versucht, die zugrunde liegende Quellstruktur zu ermitteln. Neben den aufgef\'uhrten klinischen Anwendungen ergeben sich auch zahlreiche Anwendungsfelder in der Kognitionswissenschaft. Von Interesse sind z.B.~funktionelle Zusammenh\'ange im Gehirn und die Aufdeckung der aktivierten Areale w\'ahrend der Verarbeitung eines Reizes, wie z.B. der Sprachverarbeitung im Gehirn. Die L\'osung des Vorw\'artsproblems impliziert die Mo\-del\-lierung des Kopfes als Volumenleiter. Es ist bekannt, dass in makroskopischer Hinsicht Gewebe wie die Kopfhaut, der Sch\'adel, die Zerebrospinalfl\'ussigkeit (engl.: CSF) und die Hirngewebe graue und wei{\ss}e Substanz (engl.: GM und WM) verschiedene Leitf\'ahigkeiten besitzen. Der menschliche Sch\'adel ist aus drei Schichten aufgebaut, eine relativ gut leitf\'ahige spongi\'ose Schicht wird von zwei stark isolierenden Schichten, den \'au{\ss}eren und inneren Kompakta, eingeschlossen. In radialer Richtung durch den Sch\'adel handelt es sich also um eine Reihenschaltung von hohem, niedrigem und hohem Widerstand, wohingegen in den tangentialen Richtungen die Leiter parallel geschaltet sind. Als Ganzes gesehen besitzt der Sch\'adel demnach eine richtungsabh\'angige oder {\em anisotrope} Leitf\'ahigkeit mit einem gemessenen Verh\'altnis von bis zu 1 zu 10. F\'ur die faserige WM wurde ebenfalls eine Anisotropie mit einem \'ahnlichen Verh\'altnis (senkrecht zu parallel zu den Fasern) nachgewiesen. Leider existiert bis heute keine direkte Methode, die Leitf\'ahigkeit der WM nicht-invasiv in gen\'ugender Aufl\'osung zu ermittelt. Seit einigen Jahren werden aller\-dings Formalismen diskutiert, die den gesuchten Leitf\'ahigkeitstensor in Bezug setzen zum Wasserdiffusionstensor, der in WM nicht-invasiv \'uber die Diffusionstensor-MRT (DT-MRT) gemessen werden kann. Nat\'urlich wird keine fundamentale Beziehung zwischen der freien Beweglichkeit von Ionen und Wasserteilchen angenommen, sondern lediglich, dass die eingeschr\'ankte Mobilit\'at \'uber die Fasergeometrie der WM in Beziehung steht. Heutzutage werden verschiedene Ans\'atze f\'ur die L\'osung des Vor\-w\'arts\-pro\-blems genutzt und mit steigender Genauigkeit der Modellierung des Kopfvolumenleiters erh\'oht sich die Komplexit\'at der numerischen Feldberechnungen. Einfache Modelle, die immer noch am h\'aufigsten Gebrauchten, beschreiben den Kopf als Mehrschalenkugel-Leiter mit \'ublicherweise drei Schichten, die die Kopfhaut, den Sch\'adel und das Gehirn repr\'asentieren. Um besser auf die Geometrie der drei modellierten Oberfl\'achen einzugehen, wurden sog. BE-Modelle (von engl.: Boundary Element) entwickelt, die sich f\'ur isotrop leitf\'ahige Schichten eignen. Um sowohl auf realistische Geometrien als auch auf Anisotropien und Inhomogenit\'aten eingehen zu k\'onnen, wurden Finite-Elemente (FE) Modelle des Kopfes ent\-wi\-ckelt. Zwei wichtige Fragen stellen sich nun: Ist eine exakte Modellierung der vorgestellten Gewebeleitf\'ahigkeits-Anisotropien n\'otig und in welchen F\'allen reichen weniger berechnungsaufwendige Verfahren aus? Wie k\'onnen komplexe FE-Vorw\'artsmodelle hinreichend beschleunigt werden, um den Zeitrestriktionen f\'ur inverse Quellrekonstruktionen in den Anwendungen zu gen\'ugen? Es existieren zahlreiche Arbeiten, die, basierend auf FE-Modellen des Kopfes, gezeigt haben, dass \'Offnungen im Sch\'adel wie z.B. diejenige, durch die der optische Nerv eintritt oder das okzipitale Loch des Hirnstamms, oder Inhomogenit\'aten wie L\'asionen im Gehirn oder die Sutura des Sch\'adels (insbesondere bei Kleinkindern, wo die Sutura noch nicht geschlossen sind) einen nicht vernachl\'assigbaren Einfluss auf das EEG/MEG-Vorw\'arts\-problem haben. Eine erste Studie bzgl. der Sensitivit\'at zweier ausgew\'ahlter EEG-Rekonstruktionsverfahren wies teils gro{\ss}e Fehler im Falle der Nichtbeachtung von Sch\'adel-Anisotropie nach. Insbesondere f\'ur diverse klinische Anwendungen wird der sog. {\em single dipole fit} im kontinuierlichen Parameterraum verwendet. Aufgrund des hohen Berechnungsaufwands wurden solche Verfahren bisher noch nicht auf ihre Sensitivit\'at auf Sch\'adel\-anisotropie getestet. Obwohl bereits eine Studie einen nicht-vernachl\'assigbaren Einfluss auf die EEG/MEG-Vorw\'artssimulation zeigte, gibt es noch keinerlei Ergebnis zur Aus\-wir\-kung der WM-Anisotropie auf inverse Rekonstruktionsverfahren. Die L\'osung des inversen Problems ist im allgemeinen nicht eindeutig. Viele Dipol-Quell\-konfi\-gura\-tionen k\'onnen ein und dieselbe EEG und MEG Feldverteilung erzeugen. Zus\'atz\-liche Annahmen \'uber die Quellen sind dementsprechend unerl\'asslich. Bei den sog. {\em fokalen Rekonstruktionsmethoden} wird die Annahme gemacht, dass einige wenige Dipole den gemessenen Daten zugrunde liegen. Diese Dipole (Anzahl, Ort, Richtung, St\'arke) sollen innerhalb des anatomisch und physiologisch sinnvollen Suchgebiets so ermittelt werden, dass die Messwerte m\'oglichst genau erkl\'art werden, gleichzeitig aber das Rauschen keinen zu starken Einfluss auf die L\'osung nimmt und die Algorithmen stabil in Bezug auf eine \'Ubersch\'atzung der Anzahl aktiver Quellen bleiben. Bei diesen, wie auch bei den sog. {\em Stromdichterekonstruktionsverfahren}, wird sich das Konzept der Regularisierung als eine wichtige Methode herausstellen. Wissenschaftliche Ergebnisse der Dissertation: Die Ergebnisse der vorgelegten Dissertation k\'onnen in vier Teilbereiche aufgeteilt werden. Im ersten Teilbereich wurden Methoden zur Registrierung und Segmentierung multimodaler MR-Bilder vorgestellt mit dem Ziel, ein {\bf realistisches anisotropes Multigewebe Kopfmodell} zu generieren. In der Literatur wurde von gr\'o{\ss}eren EEG- und MEG-Quell\-rekonstruktions\-fehlern aufgrund mangelhafter Modellierung insbesondere der inneren Sch\'a\-del\-kante berichtet. Ein erster Fokus dieser Arbeit lag dementsprechend auf einer verbesserten Segmentierung dieser Kante, die \'uber ein auf dem T1-gewichteten MRT (T1-MRT) registrierten Protonendichte-ge\-wich\-teten MRT (PD-MRT) gewonnen wurde. Die innere Sch\'a\-del\-kante zeichnet sich im PD-MRT im Gegensatz zum T1-MRT durch einen hohen Kontrast zwischen CSF (protonenreich) und Knochen (protonenarm) aus. Das T1-MRT wurde hingegen f\'ur die Segmentierung der Kopfhaut, der GM und der WM verwendet. Die Standardtechnik im Bereich der EEG/MEG-Quellrekonstruktion nutzt lediglich ein T1-MRT und gewinnt die gesuchte innere Sch\'adelkante \'uber ein Gl\'atten und Aufblasen der segmentierten Hirnoberfl\'ache. Im Vergleich beider Methoden konnte eine Verbesserung der Segmentierung von bis zu 8,5mm in Gebieten erzielt werden, in denen die Standardmethode die Dicke der CSF-Schicht untersch\'atzte. \'Uber die vorgestellten Methoden, insbesondere der Segmentierung unter Ber\'ucksichtigung der MR-Inhomogenit\'aten, konnte zudem eine sehr exakte Modellierung der GM erzielt werden, welche dann als anatomische und auch physiologische Nebenbedingung in die Quellrekonstruktion eingebettet werden kann. Zur realistischen Modellierung der An\-iso\-tropie der Sch\'adelschicht wurde ein deformierbares Modell eingesetzt, welches eine gegl\'attete Spongiosaoberfl\'ache darstellt und somit ein Abgreifen der Leitf\'ahigkeitstensor-Eigenvektoren in radialer Knochenrichtung erm\'oglicht. Die Eigenvektoren der WM-Tensoren wurden \'uber Ganzkopf-DT-MRT gemessen. Sch\'adel- und WM-Tensor-Eigen\-werte wurden entweder unter Ausnutzung publizierter Werte simuliert oder gem\'a{\ss} einem differentialen EMA (von engl.: Effective Medium Approach) ermittelt. Der zweite Teilbereich betraf die {\bf schnelle hochaufgel\'oste FE-Modellierung} des EEG/ MEG-Vorw\'artsproblems. Zun\'achst wurde ein \'Uberblick \'uber die Theorie gegeben und die praktische Realisierung der sp\'ater eingesetzten hochaufgel\'osten anisotropen FE-Volumen\-leiter\-modelle vorgestellt. In numerischen Genauigkeitsstudien konnte nachgewiesen werden, dass Hexaeder-FE-Netze, welche ein Verschieben der St\'utzpunkte zur Gl\'attung an Gewebekanten nutzen, vorteilhaft sind zu herk\'ommlichen Hexaeder-Netzen. Dazu wurden die Reihenentwicklungsformeln f\'ur das Mehrschalenkugel-Modell eingesetzt. Ein wei\-terer Fokus dieser Arbeit lag auf dem Einsatz schneller FE-L\'osungsmethoden, welche die praktische Anwendbarkeit von hochaufgel\'osten anisotropen FE-Kopfmodellen in den verschiedenen Anwendungsgebieten erm\'oglichen sollte. In einem Zeitvergleich zwischen dem neu in die Software integrierten parallelen (12 Prozessoren) algebraischen Mehrgitter- und dem Standard-Einprozessor-Jacobi-Vor\-kon\-di\-tio\-nierer f\'ur das Verfahren der konjugierten Gradienten konnte f\'ur hochaufgel\'oste anisotrope FE-Kopfmodelle ein Beschleunigungsfaktor von mehr als 100 erzielt werden. Im dritten Teilbereich, den {\bf Methoden zum inversen Problem}, wurden neben einem \'Uber\-blick \'uber fokale Rekonstruktions\-verfahren und Stromdichte\-rekon\-struk\-tions\-verfahren algorithmische Neuentwicklungen pr\'asentiert. Es wurde zun\'achst die Methode des {\em single dipole fit} in die FE-Modellierung eingef\'uhrt. F\'ur multiple dipolare Quellen wurde ein {\em Si\-mu\-lated Annealing} Algorithmus in Kombination mit einer abgeschnittenen Singul\'arwertzerlegung im diskreten Parameterraum entwickelt. Im Vergleich zu Standardmethoden zeigte der Algorithmus in verschiedenen Si\-mu\-lations\-studien eine ver\-bes\-serte F\'ahigkeit der Unterscheidung zwischen realen und sog. {\em ghost} Quellen. Des Weiteren wurde eine k\'urzlich in der Literatur vorgestellte raum-zeitliche Regularisierungsme\-thode auf die Stromdichterekonstruktion und, als zweite Anwendung, auf die dynamische Impedanztomographie angewandt. Der raum-zeitliche Ansatz konnte dabei eine stabilisierende Wirkung auf die Rekonstruktionsergebnisse erzielen und zeigte im Hinblick auf seine Genauigkeit und den Speicher- und Rechenzeitbedarf Vorteile gegen\'uber einem sog. {\em Kal\-man-Gl\'atter}. Im letzten Teilbereich der Dissertation wurden Untersuchungen zur {\bf An\-iso\-tro\-pie-Sensi\-tivi\-t\'at} durchgef\'uhrt. Der erste Teil bezog sich dabei auf das Vorw\'arts\-problem, wo die Resultate im Einklang mit der verf\'ugbaren Literatur waren. Es kann festgehalten werden, dass Sch\'adelanisotropie einen nicht-vernachl\'assigbaren Einfluss auf die EEG-Simulation hatte, wohingegen das MEG unbeeinflusst blieb. Je mehr eine Quelle von WM umgeben war, desto gr\'o{\ss}er war der Einfluss der WM-Anisotropie auf sowohl EEG als auch MEG. F\'ur das MEG wirkte sich WM-Anisotropie insbesondere auf Quellen mit starken radialen Anteilen aus. Lokale Leitf\'ahigkeits\'anderungen im Bereich der Quelle sollten sowohl im Hinblick auf das EEG als auch auf das MEG modelliert werden. Im zweiten Teil wurden die Einfl\'usse auf die inverse Quellrekonstruktion untersucht. Mit 18mm maximalem Fehler des EEG basierten {\em single dipole fit} war die Lokalisation einer haupts\'achlich tangential orientierten oberfl\'achennahen Quelle besonders sensitiv gegen\'uber einer 1 zu 10 Sch\'adelanisotropie. Da die tangentialen Quellen im temporalen Bereich (Sch\'adel re\-la\-tiv d\'unn) zu tief und im parietalen und okzipitalen Bereich (Sch\'adel relativ dick) zu oberfl\'achennah lokalisiert wurden, scheint eine Approximation der Sch\'adelanisotropie in BE-Modellen \'uber eine Anpassung des skalaren Sch\'adelleitf\'ahigkeitswertes nicht m\'oglich zu sein. Obwohl bei Vernachl\'assigung der WM-Anisotropie der maximale EEG-Lokalisierungsfehler mit 6,2mm f\'ur eine tiefe Quelle wesentlich geringer ausfiel, kann aufgrund eines maximalen Orientierungsfehlers von 24^{\circ} und einer mehr als zweifach untersch\'atzten Quellst\'arke eine Missinterpretation des Ergebnisses nicht ausgeschlossen werden. F\'ur die Rekonstruktion der vier tangentialen oberfl\'achennahen Dipole, welche als Aktivit\'atszentren der sog. {\em Early Left Anterior Negativity} (ELAN) Komponente bei der Syntaxanalyse von Sprache betrachtet werden, stellte sich WM und Sch\'adel\-anisotropie als vernachl\'assigbar im Hinblick auf eine MEG-Rekonstruk\-tion heraus. Im Gegensatz dazu wurde das EEG-Rekonstruktionsergebnis f\'ur alle getesteten inversen Verfahren stark verf\'alscht. Anisotropie verschob das Aktivit\'ats\-zentrum von L1L_1 und L2L_2 Norm Stromdichterekonstruktionsverfahren entlang der Sylvischen Furche in anteriore Richtung

    Advanced Image Acquisition, Processing Techniques and Applications

    Get PDF
    "Advanced Image Acquisition, Processing Techniques and Applications" is the first book of a series that provides image processing principles and practical software implementation on a broad range of applications. The book integrates material from leading researchers on Applied Digital Image Acquisition and Processing. An important feature of the book is its emphasis on software tools and scientific computing in order to enhance results and arrive at problem solution

    Baseband Processing for 5G and Beyond: Algorithms, VLSI Architectures, and Co-design

    Get PDF
    In recent years the number of connected devices and the demand for high data-rates have been significantly increased. This enormous growth is more pronounced by the introduction of the Internet of things (IoT) in which several devices are interconnected to exchange data for various applications like smart homes and smart cities. Moreover, new applications such as eHealth, autonomous vehicles, and connected ambulances set new demands on the reliability, latency, and data-rate of wireless communication systems, pushing forward technology developments. Massive multiple-input multiple-output (MIMO) is a technology, which is employed in the 5G standard, offering the benefits to fulfill these requirements. In massive MIMO systems, base station (BS) is equipped with a very large number of antennas, serving several users equipments (UEs) simultaneously in the same time and frequency resource. The high spatial multiplexing in massive MIMO systems, improves the data rate, energy and spectral efficiencies as well as the link reliability of wireless communication systems. The link reliability can be further improved by employing channel coding technique. Spatially coupled serially concatenated codes (SC-SCCs) are promising channel coding schemes, which can meet the high-reliability demands of wireless communication systems beyond 5G (B5G). Given the close-to-capacity error correction performance and the potential to implement a high-throughput decoder, this class of code can be a good candidate for wireless systems B5G. In order to achieve the above-mentioned advantages, sophisticated algorithms are required, which impose challenges on the baseband signal processing. In case of massive MIMO systems, the processing is much more computationally intensive and the size of required memory to store channel data is increased significantly compared to conventional MIMO systems, which are due to the large size of the channel state information (CSI) matrix. In addition to the high computational complexity, meeting latency requirements is also crucial. Similarly, the decoding-performance gain of SC-SCCs also do come at the expense of increased implementation complexity. Moreover, selecting the proper choice of design parameters, decoding algorithm, and architecture will be challenging, since spatial coupling provides new degrees of freedom in code design, and therefore the design space becomes huge. The focus of this thesis is to perform co-optimization in different design levels to address the aforementioned challenges/requirements. To this end, we employ system-level characteristics to develop efficient algorithms and architectures for the following functional blocks of digital baseband processing. First, we present a fast Fourier transform (FFT), an inverse FFT (IFFT), and corresponding reordering scheme, which can significantly reduce the latency of orthogonal frequency-division multiplexing (OFDM) demodulation and modulation as well as the size of reordering memory. The corresponding VLSI architectures along with the application specific integrated circuit (ASIC) implementation results in a 28 nm CMOS technology are introduced. In case of a 2048-point FFT/IFFT, the proposed design leads to 42% reduction in the latency and size of reordering memory. Second, we propose a low-complexity massive MIMO detection scheme. The key idea is to exploit channel sparsity to reduce the size of CSI matrix and eventually perform linear detection followed by a non-linear post-processing in angular domain using the compressed CSI matrix. The VLSI architecture for a massive MIMO with 128 BS antennas and 16 UEs along with the synthesis results in a 28 nm technology are presented. As a result, the proposed scheme reduces the complexity and required memory by 35%–73% compared to traditional detectors while it has better detection performance. Finally, we perform a comprehensive design space exploration for the SC-SCCs to investigate the effect of different design parameters on decoding performance, latency, complexity, and hardware cost. Then, we develop different decoding algorithms for the SC-SCCs and discuss the associated decoding performance and complexity. Also, several high-level VLSI architectures along with the corresponding synthesis results in a 12 nm process are presented, and various design tradeoffs are provided for these decoding schemes

    Exploiting task-based programming models for resilience

    Get PDF
    Hardware errors become more common as silicon technologies shrink and become more vulnerable, especially in memory cells, which are the most exposed to errors. Permanent and intermittent faults are caused by manufacturing variability and circuits ageing. While these can be mitigated once they are identified, their continuous rate of appearance throughout the lifetime of memory devices will always cause unexpected errors. In addition, transient faults are caused by effects such as radiation or small voltage/frequency margins, and there is no efficient way to shield against these events. Other constraints related to the diminishing sizes of transistors, such as power consumption and memory latency have caused the microprocessor industry to turn to increasingly complex processor architectures. To solve the difficulties arising from programming such architectures, programming models have emerged that rely on runtime systems. These systems form a new intermediate layer on the hardware-software abstraction stack, that performs tasks such as distributing work across computing resources: processor cores, accelerators, etc. These runtime systems dispose of a lot of information, both from the hardware and the applications, and offer thus many possibilities for optimisations. This thesis proposes solutions to the increasing fault rates in memory, across multiple resilience disciplines, from algorithm-based fault tolerance to hardware error correcting codes, through OS reliability strategies. These solutions rely for their efficiency on the opportunities presented by runtime systems. The first contribution of this thesis is an algorithmic-based resilience technique, allowing to tolerate detected errors in memory. This technique allows to recover data that is lost by performing computations that rely on simple redundancy relations identified in the program. The recovery is demonstrated for a family of iterative solvers, the Krylov subspace methods, and evaluated for the conjugate gradient solver. The runtime can transparently overlap the recovery with the computations of the algorithm, which allows to mask the already low overheads of this technique. The second part of this thesis proposes a metric to characterise the impact of faults in memory, which outperforms state-of-the-art metrics in precision and assurances on the error rate. This metric reveals a key insight into data that is not relevant to the program, and we propose an OS-level strategy to ignore errors in such data, by delaying the reporting of detected errors. This allows to reduce failure rates of running programs, by ignoring errors that have no impact. The architectural-level contribution of this thesis is a dynamically adaptable Error Correcting Code (ECC) scheme, that can increase protection of memory regions where the impact of errors is highest. A runtime methodology is presented to estimate the fault rate at runtime using our metric, through performance monitoring tools of current commodity processors. Guiding the dynamic ECC scheme online using the methodology's vulnerability estimates allows to decrease error rates of programs at a fraction of the redundancy cost required for a uniformly stronger ECC. This provides a useful and wide range of trade-offs between redundancy and error rates. The work presented in this thesis demonstrates that runtime systems allow to make the most of redundancy stored in memory, to help tackle increasing error rates in DRAM. This exploited redundancy can be an inherent part of algorithms that allows to tolerate higher fault rates, or in the form of dead data stored in memory. Redundancy can also be added to a program, in the form of ECC. In all cases, the runtime allows to decrease failure rates efficiently, by diminishing recovery costs, identifying redundant data, or targeting critical data. It is thus a very valuable tool for the future computing systems, as it can perform optimisations across different layers of abstractions.Los errores en memoria se vuelven más comunes a medida que las tecnologías de silicio reducen su tamaño. La variabilidad de fabricación y el envejecimiento de los circuitos causan fallos permanentes e intermitentes. Aunque se pueden mitigar una vez identificados, su continua tasa de aparición siempre causa errores inesperados. Además, la memoria también sufre de fallos transitorios contra los cuales no se puede proteger eficientemente. Estos fallos están causados por efectos como la radiación o los reducidos márgenes de voltaje y frecuencia. Otras restricciones coetáneas, como el consumo de energía y la latencia de la memoria, obligaron a las arquitecturas de computadores a volverse cada vez más complejas. Para programar tales procesadores, se desarrollaron modelos de programación basados en entornos de ejecución. Estos sistemas forman una nueva abstracción entre hardware y software, realizando tareas como la distribución del trabajo entre recursos informáticos: núcleos de procesadores, aceleradores, etc. Estos entornos de ejecución disponen de mucha información tanto sobre el hardware como sobre las aplicaciones, y ofrecen así muchas posibilidades de optimización. Esta tesis propone soluciones a los fallos en memoria entre múltiples disciplinas de resiliencia, desde la tolerancia a fallos basada en algoritmos, hasta los códigos de corrección de errores en hardware, incluyendo estrategias de resiliencia del sistema operativo. La eficiencia de estas soluciones depende de las oportunidades que presentan los entornos de ejecución. La primera contribución de esta tesis es una técnica a nivel algorítmico que permite corregir fallos encontrados mientras el programa su ejecuta. Para corregir fallos se han identificado redundancias simples en los datos del programa para toda una clase de algoritmos, los métodos del subespacio de Krylov (gradiente conjugado, GMRES, etc). La estrategia de recuperación de datos desarrollada permite corregir errores sin tener que reinicializar el algoritmo, y aprovecha el modelo de programación para superponer las computaciones del algoritmo y de la recuperación de datos. La segunda parte de esta tesis propone una métrica para caracterizar el impacto de los fallos en la memoria. Esta métrica supera en precisión a las métricas de vanguardia y permite identificar datos que son menos relevantes para el programa. Se propone una estrategia a nivel del sistema operativo retrasando la notificación de los errores detectados, que permite ignorar fallos en estos datos y reducir la tasa de fracaso del programa. Por último, la contribución a nivel arquitectónico de esta tesis es un esquema de Código de Corrección de Errores (ECC por sus siglas en inglés) adaptable dinámicamente. Este esquema puede aumentar la protección de las regiones de memoria donde el impacto de los errores es mayor. Se presenta una metodología para estimar el riesgo de fallo en tiempo de ejecución utilizando nuestra métrica, a través de las herramientas de monitorización del rendimiento disponibles en los procesadores actuales. El esquema de ECC guiado dinámicamente con estas estimaciones de vulnerabilidad permite disminuir la tasa de fracaso de los programas a una fracción del coste de redundancia requerido para un ECC uniformemente más fuerte. El trabajo presentado en esta tesis demuestra que los entornos de ejecución permiten aprovechar al máximo la redundancia contenida en la memoria, para contener el aumento de los errores en ella. Esta redundancia explotada puede ser una parte inherente de los algoritmos que permite tolerar más fallos, en forma de datos inutilizados almacenados en la memoria, o agregada a la memoria de un programa en forma de ECC. En todos los casos, el entorno de ejecución permite disminuir los efectos de los fallos de manera eficiente, disminuyendo los costes de recuperación, identificando datos redundantes, o focalizando esfuerzos de protección en los datos críticos
    corecore