1,794 research outputs found

    Non-convex resource allocation in communication networks

    Get PDF
    The continuously growing number of applications competing for resources in current communication networks highlights the necessity for efficient resource allocation mechanisms to maximize user satisfaction. Optimization Theory can provide the necessary tools to develop such mechanisms that will allocate network resources optimally and fairly among users. However, the resource allocation problem in current networks has characteristics that turn the respective optimization problem into a non-convex one. First, current networks very often consist of a number of wireless links, whose capacity is not constant but follows Shannon capacity formula, which is a non-convex function. Second, the majority of the traffic in current networks is generated by multimedia applications, which are non-concave functions of rate. Third, current resource allocation methods follow the (bandwidth) proportional fairness policy, which when applied to networks shared by both concave and non-concave utilities leads to unfair resource allocations. These characteristics make current convex optimization frameworks inefficient in several aspects. This work aims to develop a non-convex optimization framework that will be able to allocate resources efficiently for non-convex resource allocation formulations. Towards this goal, a necessary and sufficient condition for the convergence of any primal-dual optimization algorithm to the optimal solution is proven. The wide applicability of this condition makes this a fundamental contribution for Optimization Theory in general. A number of optimization formulations are proposed, cases where this condition is not met are analysed and efficient alternative heuristics are provided to handle these cases. Furthermore, a novel multi-sigmoidal utility shape is proposed to model user satisfaction for multi-tiered multimedia applications more accurately. The advantages of such non-convex utilities and their effect in the optimization process are thoroughly examined. Alternative allocation policies are also investigated with respect to their ability to allocate resources fairly and deal with the non-convexity of the resource allocation problem. Specifically, the advantages of using Utility Proportional Fairness as an allocation policy are examined with respect to the development of distributed algorithms, their convergence to the optimal solution and their ability to adapt to the Quality of Service requirements of each application

    Resource Management and Pricing in Networks

    Get PDF
    Resource management is important for network design and deployment. Resource management and allocation have been studied under a wide variety of scenarios --- routing in wired networks, scheduling in cellular networks, multiplexing, switching, and channel access in opportunistic networks are but a few examples. In this dissertation, we revisit resource management in the context of routing and scheduling in multihop wireless networks and pricing in single resource systems. The first issue addressed is of delays in multihop wireless networks. The resource under contention is capacity which is allocated by a joint routing and scheduling algorithm. Delay in wireless networks is a key issue gaining interest with the growth of interactive applications and proliferation of wireless networks. We start with an investigation of the back-pressure algorithm (BPA), an algorithm that activates the schedule with the largest sum of link weights in a timeslot. Though the BPA is throughput-optimal, it has poor end-to-end delays. Our investigation identifies poor routing decisions at low loads as one cause for it. We improve the delay performance of max-weight algorithms by proposing a general framework for routing and scheduling algorithms that allow directing packets towards the sink node dynamically. For a stationary environment, we explicitly formulate delay minimization as a static problem while maintaining stability. We see similar improved delay performance with the advantage of reduced per time-slot complexity. Next, the issue of pricing for flow based models is studied. The increasing popularity of cloud computing and the ease of commerce over the Internet is making pricing a key issue requiring greater attention. Although pricing has been extensively studied in the context of maximizing revenue and fairness, we take a different perspective and investigate pricing with predictability. Prior work has studied resource allocations that link insensitivity and predictability. In this dissertation, we present a detailed analysis of pricing under insensitive allocations. We study three common pricing models --- fixed rate pricing, Vickrey-Clarke-Groves (VCG) auctions, and congestion-based pricing, and provide the expected operator revenue and user payments under them. A pre-payment scheme is also proposed where users pay on arrival a fee for their estimated service costs. Such a mechanism is shown to have lower variability in payments under fixed rate pricing and VCG auctions while generating the same long-term revenue as in a post-payment scheme, where users pay the exact charge accrued during their sojourn. Our formulation and techniques further the understanding of pricing mechanisms and decision-making for the operator
    • …
    corecore