164 research outputs found

    Sensitivities for Bermudan Options by Regression Methods

    Get PDF
    In this article we propose several pathwise and finite difference based methods for calculating sensitivities of Bermudan options using regression methods and Monte Carlo simulation. These methods rely on conditional probabilistic representations which allow, in combination with a regression approach, for efficient simultaneous computation of sensitivities at many initial positions. Assuming that the price of a Bermudan option can be evaluated sufficiently accurate, we develop a method for constructing deltas based on least squares. We finally propose a testing procedure for assessing the performance of the developed methods.American and Bermudan options, Optimal stopping times, Monte Carlo simulation, Deltas, Conditional probabilistic representations, Regression methods

    Monte Carlo Greeks for financial products via approximative transition densities

    Full text link
    In this paper we introduce efficient Monte Carlo estimators for the valuation of high-dimensional derivatives and their sensitivities (''Greeks''). These estimators are based on an analytical, usually approximative representation of the underlying density. We study approximative densities obtained by the WKB method. The results are applied in the context of a Libor market model.Comment: 24 page

    Optimal dual martingales, their analysis and application to new algorithms for Bermudan products

    Full text link
    In this paper we introduce and study the concept of optimal and surely optimal dual martingales in the context of dual valuation of Bermudan options, and outline the development of new algorithms in this context. We provide a characterization theorem, a theorem which gives conditions for a martingale to be surely optimal, and a stability theorem concerning martingales which are near to be surely optimal in a sense. Guided by these results we develop a framework of backward algorithms for constructing such a martingale. In turn this martingale may then be utilized for computing an upper bound of the Bermudan product. The methodology is pure dual in the sense that it doesn't require certain input approximations to the Snell envelope. In an It\^o-L\'evy environment we outline a particular regression based backward algorithm which allows for computing dual upper bounds without nested Monte Carlo simulation. Moreover, as a by-product this algorithm also provides approximations to the continuation values of the product, which in turn determine a stopping policy. Hence, we may obtain lower bounds at the same time. In a first numerical study we demonstrate the backward dual regression algorithm in a Wiener environment at well known benchmark examples. It turns out that the method is at least comparable to the one in Belomestny et. al. (2009) regarding accuracy, but regarding computational robustness there are even several advantages.Comment: This paper is an extended version of Schoenmakers and Huang, "Optimal dual martingales and their stability; fast evaluation of Bermudan products via dual backward regression", WIAS Preprint 157

    Regression methods in pricing American and Bermudan options using consumption processes

    Get PDF
    Here we develop methods for e±cient pricing multidimensional discrete-time American and Bermudan options by using regression based algorithms together with a new approach towards constructing upper bounds for the price of the option. Applying the sample space with payoffs at the optimal stopping times, we propose sequential estimates for continuation values, values of the consumption process, and stopping times on the sample paths. The approach admits constructing both low and upper bounds for the price by Monte Carlo simulations. The methods are illustrated by pricing Bermudan swaptions and snowballs in the Libor market model.American and Bermudan options, Low and Upper bounds, Monte Carlo simulations, Consumption process, Regression methods, Optimal stopping times

    Sequential Design for Optimal Stopping Problems

    Full text link
    We propose a new approach to solve optimal stopping problems via simulation. Working within the backward dynamic programming/Snell envelope framework, we augment the methodology of Longstaff-Schwartz that focuses on approximating the stopping strategy. Namely, we introduce adaptive generation of the stochastic grids anchoring the simulated sample paths of the underlying state process. This allows for active learning of the classifiers partitioning the state space into the continuation and stopping regions. To this end, we examine sequential design schemes that adaptively place new design points close to the stopping boundaries. We then discuss dynamic regression algorithms that can implement such recursive estimation and local refinement of the classifiers. The new algorithm is illustrated with a variety of numerical experiments, showing that an order of magnitude savings in terms of design size can be achieved. We also compare with existing benchmarks in the context of pricing multi-dimensional Bermudan options.Comment: 24 page

    Representations for optimal stopping under dynamic monetary utility functionals

    Get PDF
    In this paper we consider the optimal stopping problem for general dynamic monetary utility functionals. Sufficient conditions for the Bellman principle and the existence of optimal stopping times are provided. Particular attention is payed to representations which allow for a numerical treatment in real situations. To this aim, generalizations of standard evaluation methods like policy iteration, dual and consumption based approaches are developed in the context of general dynamic monetary utility functionals. As a result, it turns out that the possibility of a particular generalization depends on specific properties of the utility functional under consideration.monetary utility functionals, optimal stopping, duality, policy iteration
    corecore