1,181 research outputs found

    A theoretical framework for soft-information-based synchronization in iterative (Turbo) receivers

    Get PDF
    This contribution considers turbo synchronization, that is to say, the use of soft data information to estimate parameters like carrier phase, frequency, or timing offsets of a modulated signal within an iterative data demodulator. In turbo synchronization, the receiver exploits the soft decisions computed at each turbo decoding iteration to provide a reliable estimate of some signal parameters. The aim of our paper is to show that such “turbo-estimation” approach can be regarded as a special case of the expectation-maximization (EM) algorithm. This leads to a general theoretical framework for turbo synchronization that allows to derive parameter estimation procedures for carrier phase and frequency offset, as well as for timing offset and signal amplitude. The proposed mathematical framework is illustrated by simulation results reported for the particular case of carrier phase and frequency offsets estimation of a turbo-coded 16-QAM signal

    Improved timing recovery in wireless mobile receivers

    Get PDF
    The problem of timing recovery in wireless mobile receiver systems is critical. This is partly because timing recovery functions must follow rapid parameter changes inherent in mobile systems and partly because both bandwidth and power must be conserved in low signal to noise ratio communication channels. The ultimate goal is therefore to achieve a low bit error rate on the recovered information for improving QoS provisioning to terminal mobile users. Traditional timing recovery methods have over-relied on phase-locked loops for timing information adjustment. However, associated schemes do not exploit code properties. This leads to synchronization difficulties in digital receivers separated from transmitters by lossy channels. In this paper we present a soft timing phase estimation algorithm for wireless mobile receivers in low signal to noise ratios. In order to develop a bandwidth and power efficient timing recovery method for wireless mobile receivers, a raised cosine filter and a multilevel phase shift keying modulation scheme are implemented and no clock signals are transmitted to the receiver. In the proposed method, the receiver exploits the soft decisions computed at each turbo decoding iteration to provide reliable estimates of a soft timing signal, which in turn, improves the decoding time. The derived method, based on sequential minimization techniques, approaches the theoretical Cramer-Rao bound with unbiased estimates within a few iterations.Key Words: discrete polyphase matched filters, maximum likelihood estimators, iterative turbo receivers, log-MAP b

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Advanced Equalization Techniques for Digital Coherent Optical Receivers

    Get PDF

    Combined Message Passing Algorithms for Iterative Receiver Design in Wireless Communication Systems

    Get PDF

    Soft metrics and their Performance Analysis for Optimal Data Detection in the Presence of Strong Oscillator Phase Noise

    Get PDF
    In this paper, we address the classical problem of maximum-likelihood (ML) detection of data in the presence of random phase noise. We consider a system, where the random phase noise affecting the received signal is first compensated by a tracker/estimator. Then the phase error and its statistics are used for deriving the ML detector. Specifically, we derive an ML detector based on a Gaussian assumption for the phase error probability density function (PDF). Further without making any assumptions on the phase error PDF, we show that the actual ML detector can be reformulated as a weighted sum of central moments of the phase error PDF. We present a simple approximation of this new ML rule assuming that the phase error distribution is unknown. The ML detectors derived are also the aposteriori probabilities of the transmitted symbols, and are referred to as soft metrics. Then, using the detector developed based on Gaussian phase error assumption, we derive the symbol error probability (SEP) performance and error floor analytically for arbitrary constellations. Finally we compare SEP performance of the various detectors/metrics in this work and those from literature for different signal constellations, phase noise scenarios and SNR values
    • …
    corecore