695 research outputs found

    Simultaneous Sparse Approximation Using an Iterative Method with Adaptive Thresholding

    Full text link
    This paper studies the problem of Simultaneous Sparse Approximation (SSA). This problem arises in many applications which work with multiple signals maintaining some degree of dependency such as radar and sensor networks. In this paper, we introduce a new method towards joint recovery of several independent sparse signals with the same support. We provide an analytical discussion on the convergence of our method called Simultaneous Iterative Method with Adaptive Thresholding (SIMAT). Additionally, we compare our method with other group-sparse reconstruction techniques, i.e., Simultaneous Orthogonal Matching Pursuit (SOMP), and Block Iterative Method with Adaptive Thresholding (BIMAT) through numerical experiments. The simulation results demonstrate that SIMAT outperforms these algorithms in terms of the metrics Signal to Noise Ratio (SNR) and Success Rate (SR). Moreover, SIMAT is considerably less complicated than BIMAT, which makes it feasible for practical applications such as implementation in MIMO radar systems

    Spatial Compressive Sensing for MIMO Radar

    Full text link
    We study compressive sensing in the spatial domain to achieve target localization, specifically direction of arrival (DOA), using multiple-input multiple-output (MIMO) radar. A sparse localization framework is proposed for a MIMO array in which transmit and receive elements are placed at random. This allows for a dramatic reduction in the number of elements needed, while still attaining performance comparable to that of a filled (Nyquist) array. By leveraging properties of structured random matrices, we develop a bound on the coherence of the resulting measurement matrix, and obtain conditions under which the measurement matrix satisfies the so-called isotropy property. The coherence and isotropy concepts are used to establish uniform and non-uniform recovery guarantees within the proposed spatial compressive sensing framework. In particular, we show that non-uniform recovery is guaranteed if the product of the number of transmit and receive elements, MN (which is also the number of degrees of freedom), scales with K(log(G))^2, where K is the number of targets and G is proportional to the array aperture and determines the angle resolution. In contrast with a filled virtual MIMO array where the product MN scales linearly with G, the logarithmic dependence on G in the proposed framework supports the high-resolution provided by the virtual array aperture while using a small number of MIMO radar elements. In the numerical results we show that, in the proposed framework, compressive sensing recovery algorithms are capable of better performance than classical methods, such as beamforming and MUSIC.Comment: To appear in IEEE Transactions on Signal Processin
    • …
    corecore