358 research outputs found

    Arc flow formulations based on dynamic programming: Theoretical foundations and applications

    Get PDF
    Network flow formulations are among the most successful tools to solve optimization problems. Such formulations correspond to determining an optimal flow in a network. One particular class of network flow formulations is the arc flow, where variables represent flows on individual arcs of the network. For NP-hard problems, polynomial-sized arc flow models typically provide weak linear relaxations and may have too much symmetry to be efficient in practice. Instead, arc flow models with a pseudo-polynomial size usually provide strong relaxations and are efficient in practice. The interest in pseudo-polynomial arc flow formulations has grown considerably in the last twenty years, in which they have been used to solve many open instances of hard problems. A remarkable advantage of pseudo-polynomial arc flow models is the possibility to solve practical-sized instances directly by a Mixed Integer Linear Programming solver, avoiding the implementation of complex methods based on column generation. In this survey, we present theoretical foundations of pseudo-polynomial arc flow formulations, by showing a relation between their network and Dynamic Programming (DP). This relation allows a better understanding of the strength of these formulations, through a link with models obtained by Dantzig-Wolfe decomposition. The relation with DP also allows a new perspective to relate state-space relaxation methods for DP with arc flow models. We also present a dual point of view to contrast the linear relaxation of arc flow models with that of models based on paths and cycles. To conclude, we review the main solution methods and applications of arc flow models based on DP in several domains such as cutting, packing, scheduling, and routing

    Models and algorithms for hard optimization problems

    Get PDF
    This thesis is devoted to exact solution methods for NP-hard integer programming models. We consider two of these problems, the cutting stock problem and the vehicle routing problem. Both problems have been studied for several decades by researchers and practitioners of the Operations Research eld. Their interest and contribution to real-world applications in business, industry and several kinds of organizations are irrefutable. Our solution approaches are always exact. We contribute with new lower bounds, families of valid inequalities, integer programming models and exact algorithms for the problems we explore. More precisely, we address two variants of each of the referred problems. In what concerns cutting stock problems, we analyze the one-dimensional pattern minimization problem and the two-dimensional cutting stock problem with the guillotine constraint. The one-dimensional pattern minimization problem is a cutting and packing problem that becomes relevant in situations where changing from one pattern to another involves, for example, a cost for setting up the cutting machine. It is the problem of minimizing the number of di erent patterns of a given cutting stock solution. For this problem, we contribute with new lower bounds. The two-dimensional cutting stock problem with the guillotine constraint and two stages is also addressed. We propose a pseudo-polynomial network ow model, along with some reduction criteria to reduce its symmetry. We strengthen the model with a new family of cutting planes and propose a new lower bound. For this variant, we also consider some variations of the problem.Regarding vehicle routing problems, we address the vehicle routing problem with time windows and multiple use of vehicles and the location routing problem, with capacitated vehicles and depots and multiple use of vehicles. The rst of these problems considers the well know case of vehicle routing with time windows with the additional consideration that vehicles can be assigned to several routes within the same planning period. The second variant considers the combination of the rst problem, without time windows, with a location problem. This means that the depots to be used must be selected from a set of available ones. For both of these variants, we propose a network ow model whose nodes of the underlying graph correspond to time instants of the planning period and whose arcs correspond to vehicle routes. We reduce their symmetry by deriving several reduction criteria. For the vehicle routing problem with time windows and multiple use of vehicles, we propose an iterative algorithm to solve the problem exactly. Our proposed procedures are tested and compared with other methods from the literature. All the computational results produced by the series of experiments are presented and discussed.Esta tese e dedicada a métodos de resolução exata para problemas de programação inteira NP-difíceis. São considerados dois desses problemas, nomeadamente o problema de corte e empacotamento e o problema de encaminhamento de veículos. Ambos os problemas têm vindo a ser abordados por investigadores e profissionais da área da Investigação Operacional há já várias décadas. O seu interesse e contribuição para aplicações reais do mundo dos negócios e industria, assim como para inúmeros outros tipos de organizações são, hoje em dia, inegáveis. A nossa abordagem para a resolução dos problemas descritos e exata. Contribuímos com novos limites inferiores, novas famílias de desigualdades validas, novos modelos de programação inteira e algoritmos de resolução exata para os problemas que nos propomos explorar. Em particular, abordamos duas variantes de cada um dos referidos problemas. Em relação ao problema de corte e empacotamento, analisamos o problema de minimização de padrões a uma dimensão e o problema de corte e empacotamento a duas dimensões, com restrição de guilhotina. O problema de minimização de padrões a uma dimensão e pertinente em situações em que a mudança de padrão envolve, por exemplo, custos de reconfiguração nas máquinas de corte. E o problema de minimização do numero de padrões diferentes de uma dada solução de um problema de corte. Para este problema contribuímos com novos limites inferiores. O problema de corte e empacotamento a duas dimensões com restrição de guilhotina e dois estágios e também abordado. Propomos um modelo pseudopolinomial de rede de fluxos, assim como critérios de redução que eliminam parte da sua simetria. Reforçamos o modelo com uma nova família de planos de corte e propomos novos limites inferiores. Para esta variante, consideramos também outras variações do problema original. No que se refere ao problema de encaminhamento de veículos, abordamos um problema de encaminhamento de veículos com janelas temporais e múltiplas viagens, e também um problema de localização e encaminhamento de veículos com capacidades nos veículos e depósitos e múltiplo uso dos veículos. O primeiro destes problemas considera o conhecido caso de encaminhamento de veículos com janelas temporais, com a consideração adicional de que os veículos podem ser alocados a v arias rotas no decurso do mesmo período de planeamento. A segunda variante considera a combinação do primeiro problema, embora sem janelas temporais, com um problema de localização. Isto significa que os depósitos a usar são selecionados de um conjunto de localizações disponíveis. Para ambas as variantes, propomos um modelo pseudo-polinomial de rede de fluxos cujos nodos do grafo correspondente representam instantes de tempo do período de planeamento, e cujos arcos representam rotas. Derivamos critérios de redução com o intuito de reduzir a simetria. Para o problema com janelas temporais e múltiplas viagens, propomos um algoritmo iterativo que o resolve de forma exata. Os procedimentos propostos são testados e comparados com outros métodos da literatura. Todos os resultados obtidos pelas experiencias computacionais são apresentados e discutidos

    Structure and pressure drop of real and virtual metal wire meshes

    Get PDF
    An efficient mathematical model to virtually generate woven metal wire meshes is presented. The accuracy of this model is verified by the comparison of virtual structures with three-dimensional images of real meshes, which are produced via computer tomography. Virtual structures are generated for three types of metal wire meshes using only easy to measure parameters. For these geometries the velocity-dependent pressure drop is simulated and compared with measurements performed by the GKD - Gebr. Kufferath AG. The simulation results lie within the tolerances of the measurements. The generation of the structures and the numerical simulations were done at GKD using the Fraunhofer GeoDict software

    Enhanced pseudo-polynomial formulations for bin packing and cutting stock problems

    Get PDF
    We study pseudopolynomial formulations for the classical bin packing and cutting stock problems. We first propose an overview of dominance and equivalence relations among the main pattern-based and pseudopolynomial formulations from the literature. We then introduce reflect, a new formulation that uses just half of the bin capacity to model an instance and needs significantly fewer constraints and variables than the classical models. We propose upper- and lower-bounding techniques that make use of column generation and dual information to compensate reflect weaknesses when bin capacity is too high. We also present nontrivial adaptations of our techniques that solve two interesting problem variants, namely the variable-sized bin packing problem and the bin packing problem with item fragmentation. Extensive computational tests on benchmark instances show that our algorithms achieve state of the art results on all problems, improving on previous algorithms and finding several new proven optimal solutions
    corecore