1,079 research outputs found

    Multi-Feedback Successive Interference Cancellation for Multiuser MIMO Systems

    Full text link
    In this paper, a low-complexity multiple feedback successive interference cancellation (MF-SIC) strategy is proposed for the uplink of multiuser multiple-input multiple-output (MU-MIMO) systems. In the proposed MF-SIC {algorithm with shadow area constraints (SAC)}, an enhanced interference cancellation is achieved by introducing {constellation points as the candidates} to combat the error propagation in decision feedback loops. We also combine the MF-SIC with multi-branch (MB) processing, which achieves a higher detection diversity order. For coded systems, a low-complexity soft-input soft-output (SISO) iterative (turbo) detector is proposed based on the MF and the MB-MF interference suppression techniques. The computational complexity of the MF-SIC is {comparable to} the conventional SIC algorithm {since very little additional complexity is required}. {Simulation} results show that the algorithms significantly outperform the conventional SIC scheme and {approach} the optimal detector.Comment: 6 figure

    Study of Opportunistic Cooperation Techniques using Jamming and Relays for Physical-Layer Security in Buffer-aided Relay Networks

    Full text link
    In this paper, we investigate opportunistic relay and jammer cooperation schemes in multiple-input multiple-output (MIMO) buffer-aided relay networks. The network consists of one source, an arbitrary number of relay nodes, legitimate users and eavesdroppers, with the constraints of physical layer security. We propose an algorithm to select a set of relay nodes to enhance the legitimate users' transmission and another set of relay nodes to perform jamming of the eavesdroppers. With Inter-Relay interference (IRI) taken into account, interference cancellation can be implemented to assist the transmission of the legitimate users. Secondly, IRI can also be used to further increase the level of harm of the jamming signal to the eavesdroppers. By exploiting the fact that the jamming signal can be stored at the relay nodes, we also propose a hybrid algorithm to set a signal-to-interference and noise ratio (SINR) threshold at the node to determine the type of signal stored at the relay node. With this separation, the signals with high SINR are delivered to the users as conventional relay systems and the low SINR performance signals are stored as potential jamming signals. Simulation results show that the proposed techniques obtain a significant improvement in secrecy rate over previously reported algorithms.Comment: 8 pages, 3 figure

    Flexible Widely-Linear Multi-Branch Decision Feedback Detection Algorithms for Massive MIMO Systems

    Full text link
    This paper presents widely-linear multi-branch decision feedback detection techniques for large-scale multiuser multiple-antenna systems. We consider a scenario with impairments in the radio-frequency chain in which the in-phase (I) and quadrature (Q) components exhibit an imbalance, which degrades the receiver performance and originates non-circular signals. A widely-linear multi-branch decision feedback receiver is developed to mitigate both the multiuser interference and the I/Q imbalance effects. An iterative detection and decoding scheme with the proposed receiver and convolutional codes is also devised. Simulation results show that the proposed techniques outperform existing algorithms.Comment: 3 figures, 9 pages. arXiv admin note: text overlap with arXiv:1308.272

    Coordinate Tomlinson-Harashima Precoding Design for Overloaded Multi-user MIMO Systems

    Full text link
    Tomlinson-Harashima precoding (THP) is a nonlinear processing technique employed at the transmit side to implement the concept of dirty paper coding (DPC). The perform of THP, however, is restricted by the dimensionality constraint that the number of transmit antennas has to be greater or equal to the total number of receive antennas. In this paper, we propose an iterative coordinate THP algorithm for the scenarios in which the total number of receive antennas is larger than the number of transmit antennas. The proposed algorithm is implemented on two types of THP structures, the decentralized THP (dTHP) with diagonal weighted filters at the receivers of the users, and the centralized THP (cTHP) with diagonal weighted filter at the transmitter. Simulation results show that a much better bit error rate (BER) and sum-rate performances can be achieved by the proposed iterative coordinate THP compared to the previous linear art.Comment: 3 figures, 6 pages, ISWCS 2014. arXiv admin note: text overlap with arXiv:1401.475

    Detection and Estimation Algorithms in Massive MIMO Systems

    Full text link
    This book chapter reviews signal detection and parameter estimation techniques for multiuser multiple-antenna wireless systems with a very large number of antennas, known as massive multi-input multi-output (MIMO) systems. We consider both centralized antenna systems (CAS) and distributed antenna systems (DAS) architectures in which a large number of antenna elements are employed and focus on the uplink of a mobile cellular system. In particular, we focus on receive processing techniques that include signal detection and parameter estimation problems and discuss the specific needs of massive MIMO systems. Simulation results illustrate the performance of detection and estimation algorithms under several scenarios of interest. Key problems are discussed and future trends in massive MIMO systems are pointed out.Comment: 7 figures, 14 pages. arXiv admin note: substantial text overlap with arXiv:1310.728

    Multi-Branch Lattice-Reduction SIC for Multiuser MIMO Systems

    Full text link
    In this paper, we propose a new detection technique for multiuser multiple-input multiple-output (MU-MIMO) systems. The proposed scheme combines a lattice reduction (LR) transformation, which makes the channel matrix nearly orthogonal, and then employs a multi-branch (MB) technique with successive interference cancellation (SIC). A single LR transformation is required for the receive filters of all branches in the scheme, which proposes a different ordering for each branch and generates a list of detection candidates. The best vector of estimated symbols is chosen according to the maximum likelihood (ML) selection criterion. Simulation results show that the proposed detection structure has a near-optimal performance while the computational complexity is much lower than that of the ML detector.Comment: 7 figures, ISWCS 201

    Adaptive Decision Feedback Detection with Parallel Interference Cancellation and Constellation Constraints for Multi-Antenna Systems

    Full text link
    In this paper, a novel low-complexity adaptive decision feedback detection with parallel decision feedback and constellation constraints (P-DFCC) is proposed for multiuser MIMO systems. We propose a constrained constellation map which introduces a number of selected points served as the feedback candidates for interference cancellation. By introducing a reliability checking, a higher degree of freedom is introduced to refine the unreliable estimates. The P-DFCC is followed by an adaptive receive filter to estimate the transmitted symbol. In order to reduce the complexity of computing the filters with time-varying MIMO channels, an adaptive recursive least squares (RLS) algorithm is employed in the proposed P-DFCC scheme. An iterative detection and decoding (Turbo) scheme is considered with the proposed P-DFCC algorithm. Simulations show that the proposed technique has a complexity comparable to the conventional parallel decision feedback detector while it obtains a performance close to the maximum likelihood detector at a low to medium SNR range.Comment: 10 figure

    Joint SIC and Relay Selection for Cooperative DS-CDMA Systems

    Full text link
    In this work, we propose a cross-layer design strategy based on a joint successive interference cancellation (SIC) detection technique and a multi-relay selection algorithm for the uplink of cooperative direct-sequence code-division multiple access (DS-CDMA) systems. We devise a low-cost greedy list-based SIC (GL-SIC) strategy with RAKE receivers as the front-end that can approach the maximum likelihood detector performance. %Unlike prior art, the proposed GL-SIC algorithm %exploits the Euclidean distance between users of interest, multiple %ordering and their constellation points to build an effective list %of detection candidates. We also present a low-complexity multi-relay selection algorithm based on greedy techniques that can approach the performance of an exhaustive search. %A cross-layer %design strategy that brings together the proposed GL-SIC algorithm %and the greedy relay selection is then developed. Simulations show an excellent bit error rate performance of the proposed detection and relay selection algorithms as compared to existing techniques.Comment: 5 figures, conferenc

    Distributed Iterative Detection Based on Reduced Message Passing for Networked MIMO Cellular Systems

    Full text link
    This paper considers base station cooperation (BSC) strategies for the uplink of a multi-user multi-cell high frequency reuse scenario where distributed iterative detection (DID) schemes with soft/hard interference cancellation algorithms are studied. The conventional distributed detection scheme exchanges {soft symbol estimates} with all cooperating BSs. Since a large amount of information needs to be shared via the backhaul, the exchange of hard bit information is preferred, however a performance degradation is experienced. In this paper, we consider a reduced message passing (RMP) technique in which each BS generates a detection list with the probabilities for the desired symbol that are sorted according to the calculated probability. The network then selects the best {detection candidates} from the lists and conveys the index of the constellation symbols (instead of double-precision values) among the cooperating cells. The proposed DID-RMP achieves an inter-cell-interference (ICI) suppression with low backhaul traffic overhead compared with {the conventional soft bit exchange} and outperforms the previously reported hard/soft information exchange algorithms.Comment: 9 pages, 6 figures. IEEE Transactions on Vehicular Technology, 201

    Adaptive Decision Feedback Reduced-Rank Equalization Based on Joint Iterative Optimization of Adaptive Estimation Algorithms for Multi-Antenna Systems

    Full text link
    This paper presents a novel adaptive reduced-rank multi-input-multi-output (MIMO) decision feedback equalization structure based on joint iterative optimization of adaptive estimators. The novel reduced-rank equalization structure consists of a joint iterative optimization of two equalization stages, namely, a projection matrix that performs dimensionality reduction and a reduced-rank estimator that retrieves the desired transmitted symbol. The proposed reduced-rank structure is followed by a decision feedback scheme that is responsible for cancelling the inter-antenna interference caused by the associated data streams. We describe least squares (LS) expressions for the design of the projection matrix and the reduced-rank estimator along with computationally efficient recursive least squares (RLS) adaptive estimation algorithms. Simulations for a MIMO equalization application show that the proposed scheme outperforms the state-of-the-art reduced-rank and the conventional estimation algorithms at about the same complexity.Comment: 6 figures. arXiv admin note: substantial text overlap with arXiv:1301.269
    • …
    corecore