109 research outputs found

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Mathematics and Algorithms in Tomography

    Get PDF
    This is the eighth Oberwolfach conference on the mathematics of tomography. Modalities represented at the workshop included X-ray tomography, sonar, radar, seismic imaging, ultrasound, electron microscopy, impedance imaging, photoacoustic tomography, elastography, vector tomography, and texture analysis

    Anisotropy Across Fields and Scales

    Get PDF
    This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28–November 2, 2018

    Anisotropy Across Fields and Scales

    Get PDF
    This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28–November 2, 2018

    Representation learning for histopathology image analysis

    Get PDF
    Abstract. Nowadays, automatic methods for image representation and analysis have been successfully applied in several medical imaging problems leading to the emergence of novel research areas like digital pathology and bioimage informatics. The main challenge of these methods is to deal with the high visual variability of biological structures present in the images, which increases the semantic gap between their visual appearance and their high level meaning. Particularly, the visual variability in histopathology images is also related to the noise added by acquisition stages such as magnification, sectioning and staining, among others. Many efforts have focused on the careful selection of the image representations to capture such variability. This approach requires expert knowledge as well as hand-engineered design to build good feature detectors that represent the relevant visual information. Current approaches in classical computer vision tasks have replaced such design by the inclusion of the image representation as a new learning stage called representation learning. This paradigm has outperformed the state-of-the-art results in many pattern recognition tasks like speech recognition, object detection, and image scene classification. The aim of this research was to explore and define a learning-based histopathology image representation strategy with interpretative capabilities. The main contribution was a novel approach to learn the image representation for cancer detection. The proposed approach learns the representation directly from a Basal-cell carcinoma image collection in an unsupervised way and was extended to extract more complex features from low-level representations. Additionally, this research proposed the digital staining module, a complementary interpretability stage to support diagnosis through a visual identification of discriminant and semantic features. Experimental results showed a performance of 92% in F-Score, improving the state-of-the-art representation by 7%. This research concluded that representation learning improves the feature detectors generalization as well as the performance for the basal cell carcinoma detection task. As additional contributions, a bag of features image representation was extended and evaluated for Alzheimer detection, obtaining 95% in terms of equal error classification rate. Also, a novel perspective to learn morphometric measures in cervical cells based on bag of features was presented and evaluated obtaining promising results to predict nuclei and cytoplasm areas.Los métodos automáticos para la representación y análisis de imágenes se han aplicado con éxito en varios problemas de imagen médica que conducen a la aparición de nuevas áreas de investigación como la patología digital. El principal desafío de estos métodos es hacer frente a la alta variabilidad visual de las estructuras biológicas presentes en las imágenes, lo que aumenta el vacío semántico entre su apariencia visual y su significado de alto nivel. Particularmente, la variabilidad visual en imágenes de histopatología también está relacionada con el ruido añadido por etapas de adquisición tales como magnificación, corte y tinción entre otros. Muchos esfuerzos se han centrado en la selección de la representacion de las imágenes para capturar dicha variabilidad. Este enfoque requiere el conocimiento de expertos y el diseño de ingeniería para construir buenos detectores de características que representen la información visual relevante. Los enfoques actuales en tareas de visión por computador han reemplazado ese diseño por la inclusión de la representación en la etapa de aprendizaje. Este paradigma ha superado los resultados del estado del arte en muchas de las tareas de reconocimiento de patrones tales como el reconocimiento de voz, la detección de objetos y la clasificación de imágenes. El objetivo de esta investigación es explorar y definir una estrategia basada en el aprendizaje de la representación para imágenes histopatológicas con capacidades interpretativas. La contribución principal de este trabajo es un enfoque novedoso para aprender la representación de la imagen para la detección de cáncer. El enfoque propuesto aprende la representación directamente de una colección de imágenes de carcinoma basocelular en forma no supervisada que permite extraer características más complejas a partir de las representaciones de bajo nivel. También se propone el módulo de tinción digital, una nueva etapa de interpretabilidad para apoyar el diagnóstico a través de una identificación visual de las funciones discriminantes y semánticas. Los resultados experimentales mostraron un rendimiento del 92% en términos de F-Score, mejorando la representación del estado del arte en un 7%. Esta investigación concluye que el aprendizaje de la representación mejora la generalización de los detectores de características así como el desempeño en la detección de carcinoma basocelular. Como contribuciones adicionales, una representación de bolsa de caracteristicas (BdC) fue ampliado y evaluado para la detección de la enfermedad de Alzheimer, obteniendo un 95% en términos de EER. Además, una nueva perspectiva para aprender medidas morfométricas en las células del cuello uterino basado en BdC fue presentada y evaluada obteniendo resultados prometedores para predecir las areás del nucleo y el citoplasma.Maestrí

    Diffusion MRI analysis:robust and efficient microstructure modeling

    Get PDF
    Diffusion MRI (dMRI) allows for investigating the structure of the human brain. This is useful for both scientific brain research as well as medical diagnosis. Since the raw dMRI data is not directly interpretable by humans, we use mathematical models to convert the raw dMRI data into something interpretable. These models can be computed using multiple different computational methods, each having a different trade-off in accuracy, robustness and efficiency. In this thesis we studied multiple different computational models for their usability and efficiency for dMRI modeling. In the end we provide the reader with methodological recommendations for dMRI modeling and provide a high performance GPU enabled dMRI computing platform containing all recommendations
    • …
    corecore