52,844 research outputs found

    Intelligent perturbation algorithms for space scheduling optimization

    Get PDF
    Intelligent perturbation algorithms for space scheduling optimization are presented in the form of the viewgraphs. The following subject areas are covered: optimization of planning, scheduling, and manifesting; searching a discrete configuration space; heuristic algorithms used for optimization; use of heuristic methods on a sample scheduling problem; intelligent perturbation algorithms are iterative refinement techniques; properties of a good iterative search operator; dispatching examples of intelligent perturbation algorithm and perturbation operator attributes; scheduling implementations using intelligent perturbation algorithms; major advances in scheduling capabilities; the prototype ISF (industrial Space Facility) experiment scheduler; optimized schedule (max revenue); multi-variable optimization; Space Station design reference mission scheduling; ISF-TDRSS command scheduling demonstration; and example task - communications check

    Intelligent perturbation algorithms to space scheduling optimization

    Get PDF
    The limited availability and high cost of crew time and scarce resources make optimization of space operations critical. Advances in computer technology coupled with new iterative search techniques permit the near optimization of complex scheduling problems that were previously considered computationally intractable. Described here is a class of search techniques called Intelligent Perturbation Algorithms. Several scheduling systems which use these algorithms to optimize the scheduling of space crew, payload, and resource operations are also discussed

    Relaxed Schedulers Can Efficiently Parallelize Iterative Algorithms

    Full text link
    There has been significant progress in understanding the parallelism inherent to iterative sequential algorithms: for many classic algorithms, the depth of the dependence structure is now well understood, and scheduling techniques have been developed to exploit this shallow dependence structure for efficient parallel implementations. A related, applied research strand has studied methods by which certain iterative task-based algorithms can be efficiently parallelized via relaxed concurrent priority schedulers. These allow for high concurrency when inserting and removing tasks, at the cost of executing superfluous work due to the relaxed semantics of the scheduler. In this work, we take a step towards unifying these two research directions, by showing that there exists a family of relaxed priority schedulers that can efficiently and deterministically execute classic iterative algorithms such as greedy maximal independent set (MIS) and matching. Our primary result shows that, given a randomized scheduler with an expected relaxation factor of kk in terms of the maximum allowed priority inversions on a task, and any graph on nn vertices, the scheduler is able to execute greedy MIS with only an additive factor of poly(kk) expected additional iterations compared to an exact (but not scalable) scheduler. This counter-intuitive result demonstrates that the overhead of relaxation when computing MIS is not dependent on the input size or structure of the input graph. Experimental results show that this overhead can be clearly offset by the gain in performance due to the highly scalable scheduler. In sum, we present an efficient method to deterministically parallelize iterative sequential algorithms, with provable runtime guarantees in terms of the number of executed tasks to completion.Comment: PODC 2018, pages 377-386 in proceeding

    Optimasi Penjadwalan Sumberdaya Dengan Metode Algoritma Genetik Dan Algoritma Momen Minimum

    Full text link
    . Resource scheduling is one of the most important aspects of project control and scheduling. Existing methods such as Trial And Error Approach, Heuristics Algorithms, and Minimum Moment Algorithms, have the ability to solve resource scheduling problems, by means of minimizing fluctuations of resource utilization. In addition to resource scheduling and time-cost trade-off problems, the optimization for searching the optimal solution of two objective functions can hardly be solved by using simple mathematical programming. This paper presents an attempt to implement Genetic Algorithms approach in pursuit of finding optimal solution for resource scheduling problem by also considering the time-cost trade-off problems. Effort to find the optimal solution has been developed using minimum moment algorithm approach through the iterative calculation of improvement factor. The result shows that a near optimal solution for both resource schedule deviation and minimum cost can be achieved simultaneously

    A NeuroGenetic Approach for Multiprocessor Scheduling

    Get PDF
    This chapter presents a NeuroGenetic approach for solving a family of multiprocessor scheduling problems. We address primarily the Job-Shop scheduling problem, one of the hardest of the various scheduling problems. We propose a new approach, the NeuroGenetic approach, which is a hybrid metaheuristic that combines augmented-neural-networks (AugNN) and genetic algorithms-based search methods. The AugNN approach is a nondeterministic iterative local-search method which combines the benefits of a heuristic search and iterative neural-network search. Genetic algorithms based search is particularly good at global search. An interleaved approach between AugNN and GA combines the advantages of local search and global search, thus providing improved solutions compared to AugNN or GA search alone. We discuss the encoding and decoding schemes for switching between GA and AugNN approaches to allow interleaving. The purpose of this study is to empirically test the extent of improvement obtained by using the interleaved hybrid approach instead of applied using a single approach on the job-shop scheduling problem. We also describe the AugNN formulation and a Genetic Algorithm approach for the JobShop problem. We present the results of AugNN, GA and the NeuroGentic approach on some benchmark job-shop scheduling problems

    Maiter: An Asynchronous Graph Processing Framework for Delta-based Accumulative Iterative Computation

    Full text link
    Myriad of graph-based algorithms in machine learning and data mining require parsing relational data iteratively. These algorithms are implemented in a large-scale distributed environment in order to scale to massive data sets. To accelerate these large-scale graph-based iterative computations, we propose delta-based accumulative iterative computation (DAIC). Different from traditional iterative computations, which iteratively update the result based on the result from the previous iteration, DAIC updates the result by accumulating the "changes" between iterations. By DAIC, we can process only the "changes" to avoid the negligible updates. Furthermore, we can perform DAIC asynchronously to bypass the high-cost synchronous barriers in heterogeneous distributed environments. Based on the DAIC model, we design and implement an asynchronous graph processing framework, Maiter. We evaluate Maiter on local cluster as well as on Amazon EC2 Cloud. The results show that Maiter achieves as much as 60x speedup over Hadoop and outperforms other state-of-the-art frameworks.Comment: ScienceCloud 2012, TKDE 201
    corecore