98 research outputs found

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Energy-efficient cooperative resource allocation for OFDMA

    Get PDF
    Energy is increasingly becoming an exclusive commodity in next generation wireless communication systems, where even in legacy systems, the mobile operators operational expenditure is largely attributed to the energy bill. However, as the amount of mobile traffic is expected to double over the next decade as we enter the Next Generation communications era, the need to address energy efficient protocols will be a priority. Therefore, we will need to revisit the design of the mobile network in order to adopt a proactive stance towards reducing the energy consumption of the network. Future emerging communication paradigms will evolve towards Next Generation mobile networks, that will not only consider a new air interface for high broadband connectivity, but will also integrate legacy communications (LTE/LTE-A, IEEE 802.11x, among others) networks to provide a ubiquitous communication platform, and one that can host a multitude of rich services and applications. In this context, one can say that the radio access network will predominantly be OFDMA based, providing the impetus for further research studies on how this technology can be further optimized towards energy efficiency. In fact, advanced approaches towards both energy and spectral efficient design will still dominate the research agenda. Taking a step towards this direction, LTE/LTE-A (Long Term Evolution-Advanced) have already investigated cooperative paradigms such as SON (self-Organizing Networks), Network Sharing, and CoMP (Coordinated Multipoint) transmission. Although these technologies have provided promising results, some are still in their infancy and lack an interdisciplinary design approach limiting their potential gain. In this thesis, we aim to advance these future emerging paradigms from a resource allocation perspective on two accounts. In the first scenario, we address the challenge of load balancing (LB) in OFDMA networks, that is employed to redistribute the traffic load in the network to effectively use spectral resources throughout the day. We aim to reengineer the load-balancing (LB) approach through interdisciplinary design to develop an integrated energy efficient solution based on SON and network sharing, what we refer to as SO-LB (Self-Organizing Load balancing). Obtained simulation results show that by employing SO-LB algorithm in a shared network, it is possible to achieve up to 15-20% savings in energy consumption when compared to LTE-A non-shared networks. The second approach considers CoMP transmission, that is currently used to enhance cell coverage and capacity at cell edge. Legacy approaches mainly consider fundamental scheduling policies towards assigning users for CoMP transmission. We build on these scheduling approaches towards a cross-layer design that provide enhanced resource utilization, fairness, and energy saving whilst maintaining low complexity, in particular for broadband applications

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Efficient radio resource management in next generation wireless networks

    Get PDF
    The current decade has witnessed a phenomenal growth in mobile wireless communication networks and subscribers. In 2015, mobile wireless devices and connections were reported to have grown to about 7.9 billion, exceeding human population. The explosive growth in mobile wireless communication network subscribers has created a huge demand for wireless network capacity, ubiquitous wireless network coverage, and enhanced Quality of Service (QoS). These demands have led to several challenging problems for wireless communication networks operators and designers. The Next Generation Wireless Networks (NGWNs) will support high mobility communications, such as communication in high-speed rails. Mobile users in such high mobility environment demand reliable QoS, however, such users are plagued with a poor signal-tonoise ratio, due to the high vehicular penetration loss, increased transmission outage and handover information overhead, leading to poor QoS provisioning for the networks' mobile users. Providing a reliable QoS for high mobility users remains one of the unique challenges for NGWNs. The increased wireless network capacity and coverage of NGWNs means that mobile communication users at the cell-edge should have enhanced network performance. However, due to path loss (path attenuation), interference, and radio background noise, mobile communication users at the cell-edge can experience relatively poor transmission channel qualities and subsequently forced to transmit at a low bit transmission rate, even when the wireless communication networks can support high bit transmission rate. Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed. The performance of proposed ATMA CAC scheme is investigated and compare it with the traditional CAC scheme. The ATMA scheme exploits the mobility events in the highspeed mobility communication environment and the calls (new and handoff calls) generation pattern to enhance the QoS (new call blocking and handoff call dropping probabilities) of the mobile users. The numbers of new and handoff calls in wireless communication networks are dynamic random processes that can be effectively modeled by the Continuous Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed

    Evaluation of 3GPP Technology Candidate Towards Fourth Generation Mobile

    Full text link
    [ES] LTE-Advanced es una de las tecnologías candidatas para convertirse en la próxima generación de comunicaciones móviles (4G). Es responsabilidad de la Unión Internacional de las Telecomunicaciones (UIT) evaluar esta tecnología a través de los Grupos de Evaluación Externos (GEE), entre los cuales se encuentra el consorcio WINNER+ (Wireless World Initiative New Radio +). El Grupo de Comunicaciones Móviles (GCM) del Instituto de Telecomunicaciones y Aplicaciones Multimedia, como socio de WINNER+, está analizando diferentes técnicas para optimizar la red de acceso radio LTEAdvanced. Esta tesina de máster se enmarca dentro de este trabajo, y especialmente, en la comparación de los turbo-códigos (TC) y Low Density Partity Check (LDPC) para anchos de banda de hasta 100 MHz. Los resultados obtenidos muestran que tanto los TC como los LDPC son buenos codificadores para esos tamaños de bloque. Los códigos LDPC representan una mejora de 0.5 dB como máximo respecto a los TC. Además, se ha realizado un estudio de prestaciones de la capa física de LTE en el enlace ascendente y descendente, junto con una propuesta de calibración de este tipo de simulaciones de enlace.[EN] LTE-Advanced is one promising candidate technology to become part of the next generation mobile (4G). It is up to the International Telecommunication Union (ITU) standardization body to assess this technology through the External Evaluation Groups (EEG), being one of them the WINNER+ project (Wireless World Initiative New Radio +). The Mobile Communications Group (MCG) of the Institute of Telecommunications and Multimedia Applications, as a partner of WINNER+, is currently analyzing and proposing different techniques with the aim of optimizing the LTE-Advanced radio access network. This Master Thesis is part of this activity and, especially, on the comparison of Turbo (TC) and Low Density Parity Check (LDPC) codes for bandwidths up to 100 MHz. Results prove that both TC and LDPC codes are good encoders for those block sizes. The LDPC codes only entail a maximum 0.5 dB improvement as compared with TC. In addition to this assessment, a performance study of LTE downlink/uplink (DL/ UL) physical layer together with a calibration proposal for link level simulations has been carried out.Cabrejas Peñuelas, J. (2009). Evaluation of 3GPP Technology Candidate Towards Fourth Generation Mobile. http://hdl.handle.net/10251/27347.Archivo delegad
    corecore