19 research outputs found

    Pilot based single user frequency offset estimation in spectrally-overlapping FDMA CPM systems

    Get PDF
    The spectral efficiency of a frequency division multiple access system can be increased by allowing some spectral overlap of adjacent user signals, at the expense of higher interuser interference. We derive the linearized mean square error of pilot based single user maximum likelihood frequency offset estimation in such a system, assuming continuous phase modulation. We consider synchronous as well as asynchronous reception of the pilot signals from the various users. Moreover, the pilot signals are assumed to be either constant and equal to 1, or pseudo-random and independent for all users. In spite of the presence of interuser interference, we obtain relatively simple closed-form expressions, from which the effect of the modulation parameters, the pilot signal structure and the number of users is easily derived

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Interference Management and Energy Efficiency in Satellite Communications

    Get PDF
    The main areas of research of this thesis are Interference Management and Link-Level Power Efficiency for Satellite Communications. The thesis is divided in two parts. Part I tackles the problem of interference environments in satellite communications, and interference mitigation strategies, not just in terms of avoidance of the interferers, but also in terms of actually exploiting the interference present in the system as a useful signal. The analysis follows a top-down approach across different levels of investigation, starting from system level consideration on interference management, down to link-level aspects and to intra-receiver design. Interference Management techniques are proposed at all the levels of investigation, with interesting results. Part II is related to efficiency in the power domain, for instance in terms of required Input Back-off at the power amplifiers, which can be an issue for waveform based on linear modulations, due to their varying envelope. To cope with such aspects, an analysis is carried out to compare linear modulation with waveforms based on constant envelope modulations. It is shown that in some scenarios, constant envelope waveforms, even if at lower spectral efficiency, outperform linear modulation waveform in terms of energy efficiency

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Iterative Detection for Overloaded Multiuser MIMO OFDM Systems

    Get PDF
    Inspired by multiuser detection (MUD) and the ‘Turbo principle’, this thesis deals with iterative interference cancellation (IIC) in overloaded multiuser multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. Linear detection schemes, such as zero forcing (ZF) and minimum mean square error (MMSE) cannot be used for the overloaded system because of the rank deficiency of channel matrix, while the optimal approach, the maximum likelihood (ML) detection has high computational complexity. In this thesis, an iterative interference cancellation (IIC) multiuser detection scheme with matched filter and convolutional codes is considered. The main idea of this combination is a low complexity receiver. Parallel interference cancellation (PIC) is employed to improve the multiuser receiver performance for overloaded systems. A log-likelihood ratio (LLR) converter is proposed to further improve the reliability of the soft value converted from the output of the matched filter. Simulation results show that the bit error rate (BER) performance of this method is close to the optimal approach for a two user system. However, for the four user or more user system, it has an error floor of the BER performance. For this case, a channel selection scheme is proposed to distinguish whether the channel is good or bad by using the mutual information based on the extrinsic information transfer (EXIT) chart. The mutual information can be predicted in a look-up table which greatly reduces the complexity. For those ‘bad’ channels identified by the channel selection, we introduce two adaptive transmission methods to deal with such channels: one uses a lower code rate, and the other is multiple transmissions. The use of an IIC receiver with the interleave-division multiple access (IDMA) to further improve the BER performance without any channel selection is also investigated. It has been shown that this approach can remove the error floor. Finally, the influence of channel accuracy on the IIC is investigated. Pilot-based Wiener filter channel estimation is used to test and verify how much the IIC is influenced by the channel accuracy

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Spectral and Energy Efficient Communication Systems and Networks

    Get PDF
    In this thesis, design and analysis of energy- and spectral-efficient communication and cellular systems in micro wave and millimeter wave bands are considered using the following system performance metrics: i) Energy efficiency; ii) Spectral efficiency; iii) Spatial spectral efficiency; iv) Spatial energy efficiency, and v) Bit error rate. Statistical channel distributions, Nakagami-m and Generalized-K, and path loss models, Line of Sight (LOS) and Non-Line of Sight (NLOS), are used to represent the propagation environment in these systems. Adaptive M-QAM and M-CPFSK communication systems are proposed to enhance their efficiency metrics as a function of Signal-to-Noise Ratio (SNR) over the channel. It is observed that in the adaptive M-QAM system energy efficiency can be improved by 0.214 bits/J whereas its spectral efficiency can be enhanced by 40%, for wide range of SNR compared to that of conventional M-QAM system. In case of adaptive M-CPFSK system, spectral and energy efficiencies can be increased by 33% and 76%, respectively. A framework for design and analysis of a cellular system, with omni and sectorized antenna systems at Base Station (BS), using its efficiency metrics and coverage probability is presented assuming wireless channel is Nakagami-m fading coupled with path loss and co-channel interference. It is noted that sectorized antenna system at BS enhances energy and spectral efficiencies by nearly 109% and 1.5 bits/s/Hz, respectively, compared to conventional omni antenna system. A Multi-User MIMO cellular system is then investigated and closed-form expressions for its uplink efficiency metrics are derived for fading and shadowing wireless channel environment. It is observed that increasing number of antennas in MIMO system at BS can significantly improve efficiency metrics of cellular system. Finally, a framework for design and analysis of dense mmWave cellular system, in 28 and 73 GHz bands, is presented for efficient utilization of spectrum and power of the system. The efficiency metrics of the system are evaluated for LOS and NLOS links. It is observed that while 28 GHz band is expedient for indoor cellular systems, the 73 GHz band is appropriate for outdoor systems
    corecore