66 research outputs found

    SGD Frequency-Domain Space-Frequency Semiblind Multiuser Receiver with an Adaptive Optimal Mixing Parameter

    Get PDF
    A novel stochastic gradient descent frequency-domain (FD) space-frequency (SF) semiblind multiuser receiver with an adaptive optimal mixing parameter is proposed to improve performance of FD semiblind multiuser receivers with a fixed mixing parameters and reduces computational complexity of suboptimal FD semiblind multiuser receivers in SFBC downlink MIMO MC-CDMA systems where various numbers of users exist. The receiver exploits an adaptive mixing parameter to mix information ratio between the training-based mode and the blind-based mode. Analytical results prove that the optimal mixing parameter value relies on power and number of active loaded users existing in the system. Computer simulation results show that when the mixing parameter is adapted closely to the optimal mixing parameter value, the performance of the receiver outperforms existing FD SF adaptive step-size (AS) LMS semiblind based with a fixed mixing parameter and conventional FD SF AS-LMS training-based multiuser receivers in the MSE, SER and signal to interference plus noise ratio in both static and dynamic environments

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Space-time-frequency block codes for MIMO-OFDM in next generation wireless systems

    Get PDF
    In this thesis the use of space-frequency block codes (SFBC) and space-time-frequency block codes (STFBC) in wireless systems are investigated. A variety of SFBC and STFBC schemes are proposed for particular propagation scenarios and system settings where each has its own advantages and disadvantages. The objective is to pro-pose coding strategies with improved flexibility, feasibility and spectral efficiency,and reduce the decoding complexity in an MIMO-OFDM system. Firstly an efficient SFBC with improved system performance is proposed for MIMO-OFDM systems. The proposed SFBC incorporates the concept of matched rotation precoding (MRP) to achieve full transmit diversity and optimal system performance foran arbitrary numberoftransmitantennas,subcarrierinterval andsubcarriergrouping. The MRP is proposed to exploit the inherent rotation and repetition properties of SFBC, arising from the channel power delay profile, in order to fully capture both space and frequency diversity of SFBC in a MIMO-OFDM system. It is able to relax restrictions on subcarrier interval and subcarrier grouping, making it ideal for adaptive/time-varying systems or multiuser systems. The SFBC without an optimization process is unstable in terms of achievable system performance and diversity order, and also risks diversity loss within a specific propagation scenario. Such loss or risk is prominent while wireless propagation channel has a limited number of dominant paths, e.g. relatively close to transmitters or relatively flat topography. Hence in orderto improve the feasibility of SFBC in dynamic scenarios, the lower bound of the coding gain for MRP is derived. The SFBC with MRP is proposed for more practical scenarios when only partial channel power delay profile information is known at the transmit end, for example the wireless channel has dominant propagation paths. The proposed rate one MRP has a relatively simple optimization process that can be transformed into an explicit diagram and hence an optimal result can be derived intuitively without calculations. Next, a multi-rate transmission strategy is proposed for both SFBCand STFBC to balance the system performance and transmission rate. A variety of rate adaptive coding matrices are obtained by a simple truncation of the coding matrix, or by parameter optimization for coding matrices for a given transmission rate and constellation. Pro-posed strategy can easily and gradually adjust the achievable diversity order. As a result it is capable of achieving a relatively smooth balance between system performance and transmission rate in both SFBC and STFBC, without a significant change of coding structure or constellation size. Such tradeoff would be useful to maintain stable Quality of Service (QoS) for users by providing more scalability of achievable performance in a time-varying channel. Finally the decoding procedure of space-time block code (STBC), SFBCand STFBC is discussed. The decoding of all existing STBC/SFBC/STFBC is unified at first, in order to show a concise procedure and make fair comparisons. Then maximum likelihood decoding (MLD) and arbitrary sphere decoding (SD) can be adopted. To reduce the complexity of decoding further, a novel decoding method called compensation de-coding (CD) is presented for a given space-time-frequency coding scheme. By taking advantage of the simplicity of zero-forcing decoding (ZFD) we are able to calculate a compensation vector for the output of ZFD. After modification by utilizing the com-pensation vector, the BER performance can be improved significantly. The decoding procedure is relatively simple and is independent of the constellation size. The per-formance of the proposed decoding method is close to maximum-likelihood decoding for low to medium SNR. A low complexity detection scheme, classifier based decoding (CBD), is further proposed for MIMO systems incorporating spatial multiplexing. The CBD is a hybrid of an equalizer-based technique and an algorithmic search stage. Based on an error matrix and its probability density functions for different classes of error, a particular search region is selected for the algorithmic stage. As the probability of occurrence of error classes with larger search regions is small, overall complexity of the proposed technique remains low, whilst providing a significant improvement in the bit error rate performance

    Investigation of Channel Adaptation and Interference for Multiantenna OFDM

    Get PDF

    Técnicas de processamento com múltiplas antenas para o sistema LTE

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesPerformance, mobilidade e partilha podem ser consideras como as três palavras-chave nas comunicações móveis de hoje em dia. Uma das necessidades fundamentais do ser humano é a partilha de experiencias e informação. Com a evolução ao nível do hardware móvel, a crescente popularidade de smartphones, tablets e outros dispositivos moveis, fez com que a exigência em termos de capacidade e taxa de transferência por parte das redes móveis não parasse de crescer. As limitações das redes 3G fizeram com que não conseguissem corresponder a tais exigências e como tal, a transição para uma tecnologia mais robusta e eficiente passou a ser inevitável. A resposta escolhida como solução a longo prazo é a rede designada por LTE, desenvolvida pela organização 3GPP é assumido que será a rede de telecomunicações predominante no futuro. As vantagens mais sonantes são, naturalmente, elevadas taxas de transmissão, maior eficiência espectral, redução da latência e de custos de operação. As principais tecnologias em que o LTE se baseia, são o OFDM e sua variante para múltiplo acesso, OFDMA, usado para o downlink e o SC-FDMA para o uplink. Além disso, usa sistemas com múltiplas antenas para impulsionar a eficiência espectral. Apesar de já implementado em alguns países por diversas operadoras, constantes pesquisas continuam a ser realizadas com o intuito de melhorar a sua performance. Nesta dissertação é proposto um esquema duplo de codificação na frequência e no espaço (D-SFBC) para um cenário baseado em OFDM com 4 antenas de transmissão e duas antenas de recepção (4 × 2 D-SFBC) para o downlink. No cenário considerado, 4 símbolos de dados são transmitidos utilizando unicamente 2 sub-portadoras, fazendo com que, este sistema seja limitado pela interferência. Para de forma eficiente descodificar os símbolos de dados transmitidos, foi desenvolvido um equalizador iterativo no domínio da frequência. Duas abordagens são consideradas: cancelamento da interferência em paralelo (PIC) e sucessivo cancelamento de interferência (SIC). Uma vez que apenas 2 sub-portadoras são usadas para transmitir quatro símbolos de dados em paralelo, o esquema desenvolvido duplica a taxa de dados quando comparado com o esquema 2 × 2 SFBC, especificado no standard do LTE. Os esquemas desenvolvidos foram avaliados sob as especificações para LTE e usando codificação de canal. Os resultados mostram que os esquemas implementados neste trabalho utilizando um equalizador iterativo supera os convencionais equalizadores lineares na eliminação da interferência adicional introduzida, em apenas 2 ou 3 iterações.Performance, mobility and sharing can be assumed as the three keywords in the mobile communications nowadays. One of the fundamental needs of human beings is to share experiences and information. With the evolution of mobile hardware level, the growing popularity of smartphones, tablets and other mobile devices, has made that the demand in terms of capacity and throughput by mobile networks did not stop growing. Thus, the limitations of 3G stops it of being the answer of such demand, and a transition to a powerful technology has become unavoidable. The answer chosen is LTE, developed by the 3GPP organization is assumed to be the predominant telecommunications network in the future. The most relevant advantages are high transmission rates, higher spectral efficiency, reducing latency and operating costs. The key technologies in which LTE is based, are OFDM and its variant schemes for multiple access, OFDMA, used for downlink, and SC-FDMA for the uplink. It also uses multiple antennas systems in order to improve spectral efficiency. Although already implemented in some countries by several operators, continuous research is conducted in order to improve their performance. In this dissertation it is proposed a double space-frequency block coding (D-SFBC) scheme for an OFDM based scenario with 4 transmit antennas and 2 receive antennas (4×2 D-SFBC) for the downlink. In the considered scenario, 4 data symbols are transmitted by using only 2 subcarriers and thus the system is interference limited. To efficiently decode the transmitted data symbols an iterative equalizer designed in frequency domain is developed. Two approaches are considered: parallel interference cancellation (PIC) and successive interference cancellation (SIC). Since only 2 subcarriers are used to transmit 4 data symbols in parallel the developed scheme achieve the double data rate when compared with the 2×2 SFBC, specified in the LTE standard. The developed schemes were evaluated under the main LTE specifications and using channel coding. The results have show that the schemes implemented in this work using an interactive equalizer outperforms the conventional linear equalizers in the interference removal, just by using 2 or 3 iterations

    Técnicas de equalização iterativas no espaço-frequência para o LTE

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesMobile communications had a huge leap on its evolution in the last decade due to the constant increase of the user requirements. The Long Term Evolution is the new technology developed to give proper answer to the needs of a growing mobile communications community, offering much higher data rates, better spectral efficiency and lower latency when compared to previous technologies, along with scalable bandwidth, interoperability and easy roaming. All these advantages are possible due to the implementation of new network architectures like the E-UTRAN access network and the EPC core network, the use of MIMO systems, and new multiple access schemes: OFDMA for downlink and SC-FDMA for uplink. This thesis focuses on the uplink communication of this technology with SC-FDMA, specifically on the use of Iterative Block Decision Feedback Equalizers (IB-DFE) where both the feedback and the feedforward equalizer matrices are applied on the frequency domain. Two IB-DFE schemes were implemented using both Parallel Interference Cancellation (PIC) and Serial Interference Cancellation (SIC) based processing. We considered the uplink scenario where some users share the same physical channel to transmit its own information to the Base Station (BS). Also, we consider that the BS is equipped with multiple antennas and the user terminals (UT) with a single antenna. The aim of the studied iterative schemes is to efficiently remove both the multi-user and inter-carrier interferences, while allowing a close-to-optimum space-diversity gain. The results obtained showed that both PIC and SIC implementations presented better performance than the conventional used linear multi-user sub optimal equalizers ZF and MMSE. Both solutions efficiently eliminate the multi-user interference, although the SIC based scheme slightly outperforms the PIC approach, with a performance close to the one achieved by the Matched Filter Bound (MFB).As comunicações móveis tiveram um grande avanço na sua evolução na última década devido ao constante aumento dos requisitos dos utilizadores. O Long Term Evolution é a nova tecnologia desenvolvida para dar resposta às necessidades de uma crescente comunidade de comunicações móveis, oferecendo taxas de transmissão de dados muito mais elevadas, melhor eficiência espectral e menor latência quando comparado a tecnologias anteriores, incluindo também largura de banda escalável, interoperabilidade e roaming simples. Todas estas vantagens são possíveis devido à implementação de novas arquiteturas de rede, como a rede de acesso E-UTRAN e a rede core EPC, o uso de sistemas MIMO, e novos esquemas de múltiplo acesso: OFDMA para o downlink e SC-FDMA para o uplink. Esta tese centra-se na comunicação no sentido ascendente desta tecnologia onde o esquema utilizado é o SC-FDMA, mais especificamente na aplicação de Iterative Block Decision Feedback Equalizers (IB-DFE) onde tanto a matriz de feedback como a de feedfoward do equalizador são aplicadas no domínio da frequência. Dois esquemas IB-DFE foram implementados utilizando processamento baseado em cancelamento de interferência em paralelo (PIC) e em serie (SIC). Foi considerado um cenário ascendente onde alguns utilizadores (UEs) partilham o mesmo canal físico para transmitir a sua informação para a Estação Base (BS). È também assumido que a BS está equipada com múltiplas antenas, e os terminais dos utilizadores com uma antena apenas. O objetivo dos esquemas iterativos estudados é remover eficientemente a interferência entre utilizadores e entre portadoras, permitindo entretanto um ganho de diversidade no espaço quase ótimo. Os resultados obtidos mostraram que tanto a implementação PIC como a SIC apresentam melhor eficiência do que os habituais equalizadores lineares sub ótimos ZF e MMSE. Ambas as soluções eliminam a interferência entre utilizadores, embora o esquema SIC apresente um melhor desempenho que o PIC, aproximando- se do atingido com o Matched Filter Bound (MFB)

    Performance Analysis and Mitigation Techniques for I/Q-Corrupted OFDM Systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) has become a widely adopted modulation technique in modern communications systems due to its multipath resilience and low implementation complexity. The direct conversion architecture is a popular candidate for low-cost, low-power, fully integrated transceiver designs. One of the inevitable problems associated with analog signal processing in direct conversion involves the mismatches in the gain and phases of In-phase (I) and Quadrature-phase (Q) branches. Ideally, the I and Q branches of the quadrature mixer will have perfectly matched gains and are orthogonal in phase. Due to imperfect implementation of the electronics, so called I/Q imbalance emerges and creates interference between subcarriers which are symmetrically apart from the central subcarrier. With practical imbalance levels, basic transceivers fail to maintain the sufficient image rejection, which in turn can cause interference with the desired transmission. Such an I/Q distortion degrades the systems performance if left uncompensated. Moreover, the coexistence of I/Q imbalance and other analog RF imperfections with digital baseband and higher layer functionalities such as multiantenna transmission and radio resource management, reduce the probability of successful transmission. Therefore, mitigation of I/Q imbalance is an essential substance in designing and implementing modern communications systems, while meeting required performance targets and quality of service. This thesis considers techniques to compensate and mitigate I/Q imbalance, when combined with channel estimation, multiantenna transmission, transmission power control, adaptive modulation and multiuser scheduling. The awareness of the quantitative relationship between transceiver parameters and system parameters is crucial in designing and dimensioning of modern communications systems. For this purpose, analytical models to evaluate the performance of an I/Q distorted system are considered
    corecore