3,990 research outputs found

    Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks

    Full text link
    Autonomous robots need to interact with unknown, unstructured and changing environments, constantly facing novel challenges. Therefore, continuous online adaptation for lifelong-learning and the need of sample-efficient mechanisms to adapt to changes in the environment, the constraints, the tasks, or the robot itself are crucial. In this work, we propose a novel framework for probabilistic online motion planning with online adaptation based on a bio-inspired stochastic recurrent neural network. By using learning signals which mimic the intrinsic motivation signalcognitive dissonance in addition with a mental replay strategy to intensify experiences, the stochastic recurrent network can learn from few physical interactions and adapts to novel environments in seconds. We evaluate our online planning and adaptation framework on an anthropomorphic KUKA LWR arm. The rapid online adaptation is shown by learning unknown workspace constraints sample-efficiently from few physical interactions while following given way points.Comment: accepted in Neural Network

    Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning

    Full text link
    Reinforcement learning (RL) algorithms for real-world robotic applications need a data-efficient learning process and the ability to handle complex, unknown dynamical systems. These requirements are handled well by model-based and model-free RL approaches, respectively. In this work, we aim to combine the advantages of these two types of methods in a principled manner. By focusing on time-varying linear-Gaussian policies, we enable a model-based algorithm based on the linear quadratic regulator (LQR) that can be integrated into the model-free framework of path integral policy improvement (PI2). We can further combine our method with guided policy search (GPS) to train arbitrary parameterized policies such as deep neural networks. Our simulation and real-world experiments demonstrate that this method can solve challenging manipulation tasks with comparable or better performance than model-free methods while maintaining the sample efficiency of model-based methods. A video presenting our results is available at https://sites.google.com/site/icml17pilqrComment: Paper accepted to the International Conference on Machine Learning (ICML) 201

    Autonomous Tissue Scanning under Free-Form Motion for Intraoperative Tissue Characterisation

    Full text link
    In Minimally Invasive Surgery (MIS), tissue scanning with imaging probes is required for subsurface visualisation to characterise the state of the tissue. However, scanning of large tissue surfaces in the presence of deformation is a challenging task for the surgeon. Recently, robot-assisted local tissue scanning has been investigated for motion stabilisation of imaging probes to facilitate the capturing of good quality images and reduce the surgeon's cognitive load. Nonetheless, these approaches require the tissue surface to be static or deform with periodic motion. To eliminate these assumptions, we propose a visual servoing framework for autonomous tissue scanning, able to deal with free-form tissue deformation. The 3D structure of the surgical scene is recovered and a feature-based method is proposed to estimate the motion of the tissue in real-time. A desired scanning trajectory is manually defined on a reference frame and continuously updated using projective geometry to follow the tissue motion and control the movement of the robotic arm. The advantage of the proposed method is that it does not require the learning of the tissue motion prior to scanning and can deal with free-form deformation. We deployed this framework on the da Vinci surgical robot using the da Vinci Research Kit (dVRK) for Ultrasound tissue scanning. Since the framework does not rely on information from the Ultrasound data, it can be easily extended to other probe-based imaging modalities.Comment: 7 pages, 5 figures, ICRA 202

    Autonomy Infused Teleoperation with Application to BCI Manipulation

    Full text link
    Robot teleoperation systems face a common set of challenges including latency, low-dimensional user commands, and asymmetric control inputs. User control with Brain-Computer Interfaces (BCIs) exacerbates these problems through especially noisy and erratic low-dimensional motion commands due to the difficulty in decoding neural activity. We introduce a general framework to address these challenges through a combination of computer vision, user intent inference, and arbitration between the human input and autonomous control schemes. Adjustable levels of assistance allow the system to balance the operator's capabilities and feelings of comfort and control while compensating for a task's difficulty. We present experimental results demonstrating significant performance improvement using the shared-control assistance framework on adapted rehabilitation benchmarks with two subjects implanted with intracortical brain-computer interfaces controlling a seven degree-of-freedom robotic manipulator as a prosthetic. Our results further indicate that shared assistance mitigates perceived user difficulty and even enables successful performance on previously infeasible tasks. We showcase the extensibility of our architecture with applications to quality-of-life tasks such as opening a door, pouring liquids from containers, and manipulation with novel objects in densely cluttered environments

    Robotic Ironing with 3D Perception and Force/Torque Feedback in Household Environments

    Full text link
    As robotic systems become more popular in household environments, the complexity of required tasks also increases. In this work we focus on a domestic chore deemed dull by a majority of the population, the task of ironing. The presented algorithm improves on the limited number of previous works by joining 3D perception with force/torque sensing, with emphasis on finding a practical solution with a feasible implementation in a domestic setting. Our algorithm obtains a point cloud representation of the working environment. From this point cloud, the garment is segmented and a custom Wrinkleness Local Descriptor (WiLD) is computed to determine the location of the present wrinkles. Using this descriptor, the most suitable ironing path is computed and, based on it, the manipulation algorithm performs the force-controlled ironing operation. Experiments have been performed with a humanoid robot platform, proving that our algorithm is able to detect successfully wrinkles present in garments and iteratively reduce the wrinkleness using an unmodified iron.Comment: Accepted and to be published on the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017) that will be held in Vancouver, Canada, September 24-28, 201

    Robust Motion Control for Mobile Manipulator Using Resolved Acceleration and Proportional-Integral Active Force Control

    Full text link
    A resolved acceleration control (RAC) and proportional-integral active force control (PIAFC) is proposed as an approach for the robust motion control of a mobile manipulator (MM) comprising a differentially driven wheeled mobile platform with a two-link planar arm mounted on top of the platform. The study emphasizes on the integrated kinematic and dynamic control strategy in which the RAC is used to manipulate the kinematic component while the PIAFC is implemented to compensate the dynamic effects including the bounded known/unknown disturbances and uncertainties. The effectivenss and robustness of the proposed scheme are investigated through a rigorous simulation study and later complemented with experimental results obtained through a number of experiments performed on a fully developed working prototype in a laboratory environment. A number of disturbances in the form of vibratory and impact forces are deliberately introduced into the system to evaluate the system performances. The investigation clearly demonstrates the extreme robustness feature of the proposed control scheme compared to other systems considered in the study

    CRAVES: Controlling Robotic Arm with a Vision-based Economic System

    Full text link
    Training a robotic arm to accomplish real-world tasks has been attracting increasing attention in both academia and industry. This work discusses the role of computer vision algorithms in this field. We focus on low-cost arms on which no sensors are equipped and thus all decisions are made upon visual recognition, e.g., real-time 3D pose estimation. This requires annotating a lot of training data, which is not only time-consuming but also laborious. In this paper, we present an alternative solution, which uses a 3D model to create a large number of synthetic data, trains a vision model in this virtual domain, and applies it to real-world images after domain adaptation. To this end, we design a semi-supervised approach, which fully leverages the geometric constraints among keypoints. We apply an iterative algorithm for optimization. Without any annotations on real images, our algorithm generalizes well and produces satisfying results on 3D pose estimation, which is evaluated on two real-world datasets. We also construct a vision-based control system for task accomplishment, for which we train a reinforcement learning agent in a virtual environment and apply it to the real-world. Moreover, our approach, with merely a 3D model being required, has the potential to generalize to other types of multi-rigid-body dynamic systems.Comment: 10 pages, 6 figure

    Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search

    Full text link
    In principle, reinforcement learning and policy search methods can enable robots to learn highly complex and general skills that may allow them to function amid the complexity and diversity of the real world. However, training a policy that generalizes well across a wide range of real-world conditions requires far greater quantity and diversity of experience than is practical to collect with a single robot. Fortunately, it is possible for multiple robots to share their experience with one another, and thereby, learn a policy collectively. In this work, we explore distributed and asynchronous policy learning as a means to achieve generalization and improved training times on challenging, real-world manipulation tasks. We propose a distributed and asynchronous version of Guided Policy Search and use it to demonstrate collective policy learning on a vision-based door opening task using four robots. We show that it achieves better generalization, utilization, and training times than the single robot alternative.Comment: Submitted to the IEEE International Conference on Robotics and Automation 201
    corecore