7,904 research outputs found

    Iterative learning control for impulsive multi-agent systems with varying trial lengths

    Get PDF
    In this paper, we introduce iterative learning control (ILC) schemes with varying trial lengths (VTL) to control impulsive multi-agent systems (I-MAS). We use domain alignment operator to characterize each tracking error to ensure that the error can completely update the control function during each iteration. Then we analyze the system’s uniform convergence to the target leader. Further, we use two local average operators to optimize the control function such that it can make full use of the iteration error. Finally, numerical examples are provided to verify the theoretical results

    Monotonic Convergence of Iterative Learning Control Systems with Variable Pass Length

    No full text

    Iterative learning of human partner's desired trajectory for proactive human-robot collaboration

    Get PDF
    A period-varying iterative learning control scheme is proposed for a robotic manipulator to learn a target trajectory that is planned by a human partner but unknown to the robot, which is a typical scenario in many applications. The proposed method updates the robot’s reference trajectory in an iterative manner to minimize the interaction force applied by the human. Although a repetitive human–robot collaboration task is considered, the task period is subject to uncertainty introduced by the human. To address this issue, a novel learning mechanism is proposed to achieve the control objective. Theoretical analysis is performed to prove the performance of the learning algorithm and robot controller. Selective simulations and experiments on a robotic arm are carried out to show the effectiveness of the proposed method in human–robot collaboration

    ON ITERATIVE LEARNING CONTROL FOR SOLVING NEW CONTROL PROBLEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

    Full text link
    PID control architectures are widely used in industrial applications. Despite their low number of open parameters, tuning multiple, coupled PID controllers can become tedious in practice. In this paper, we extend PILCO, a model-based policy search framework, to automatically tune multivariate PID controllers purely based on data observed on an otherwise unknown system. The system's state is extended appropriately to frame the PID policy as a static state feedback policy. This renders PID tuning possible as the solution of a finite horizon optimal control problem without further a priori knowledge. The framework is applied to the task of balancing an inverted pendulum on a seven degree-of-freedom robotic arm, thereby demonstrating its capabilities of fast and data-efficient policy learning, even on complex real world problems.Comment: Accepted final version to appear in 2017 IEEE International Conference on Robotics and Automation (ICRA

    Model-free adaptive iterative learning control of melt pool width in wire arc additive manufacturing

    Get PDF
    © 2020, Springer-Verlag London Ltd., part of Springer Nature. Wire arc additive manufacturing (WAAM) is a Direct Energy Deposition (DED) technology, which utilize electrical arc as heat source to deposit metal material bead by bead to make up the final component. However, issues like the lack of assurance in accuracy, repeatability and stability hinder the further application in industry. Therefore, a Model Free Adaptive Iterative Learning Control (MFAILC) algorithm was developed to be applied in WAAM process in this study. The dynamic process of WAAM is modelled by adaptive neuro fuzzy inference system (ANFIS). Based on this ANFIS model, simulations are performed to demonstrate the effectiveness of MFAILC algorithm. Furthermore, experiments are conducted to investigate the tracking performance and robustness of the MFAILC controller. This work will help to improve the forming accuracy and automatic level of WAAM
    • …
    corecore