103 research outputs found

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Control of Continuous Casting Process Based on Two-Dimensional Flow Field Measurements

    Get PDF
    Two-dimensional flow field measurement allows us to obtain detailed information about the processes inside the continuous casting mould. This is very important because the flow phenomena in the mould are complex, and they significantly affect the steel quality. For this reason, control based on two-dimensional flow monitoring has a great potential to achieve substantial improvement over the conventional continuous casting control. Two-dimensional flow field measurement provides large amounts of measurement data distributed within the whole cross-section of the mould. An experimental setup of the continuous casting process called Mini-LIMMCAST located in Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, is used for this thesis. This thesis examines two alternatives of flow measurement sensors: Ultrasound Doppler Velocimetry (UDV) and Contactless Inductive Flow Tomography (CIFT). Both sensor variants can obtain information on the velocity profile in the mould. Two approaches were considered to create the process model needed for model-based control: a spatially discretized version of a model based on partial differential equations and computational fluid dynamics and a model obtained using system identification methods. In the end, system identification proved to be more fruitful for the aim of creating the model-based controller. Specific features of the flow were parametrized to obtain the needed controlled variables and outputs of identified models. These features are mainly related to the exiting jet angle and the meniscus velocity. The manipulated variables considered are electromagnetic brake current and stopper rod position. Model predictive control in several versions was used as the main control approach, and the results of simulation experiments demonstrate that the model predictive controller can control the flow and achieve the optimum flow structures in the mould using UDV. CIFT measurements can provide similar velocity profiles. However, further technical developments in the CIFT sensor signal processing, such as compensating for the effects of the strong and time-varying magnetic field of the electromagnetic brake on CIFT measurements, are necessary if this sensor is to be used for closed-loop control.Two-dimensional flow field measurement allows us to obtain detailed information about the processes inside the continuous casting mould. This is very important because the flow phenomena in the mould are complex, and they significantly affect the steel quality. For this reason, control based on two-dimensional flow monitoring has a great potential to achieve substantial improvement over the conventional continuous casting control. Two-dimensional flow field measurement provides large amounts of measurement data distributed within the whole cross-section of the mould. An experimental setup of the continuous casting process called Mini-LIMMCAST located in Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, is used for this thesis. This thesis examines two alternatives of flow measurement sensors: Ultrasound Doppler Velocimetry (UDV) and Contactless Inductive Flow Tomography (CIFT). Both sensor variants can obtain information on the velocity profile in the mould. Two approaches were considered to create the process model needed for model-based control: a spatially discretized version of a model based on partial differential equations and computational fluid dynamics and a model obtained using system identification methods. In the end, system identification proved to be more fruitful for the aim of creating the model-based controller. Specific features of the flow were parametrized to obtain the needed controlled variables and outputs of identified models. These features are mainly related to the exiting jet angle and the meniscus velocity. The manipulated variables considered are electromagnetic brake current and stopper rod position. Model predictive control in several versions was used as the main control approach, and the results of simulation experiments demonstrate that the model predictive controller can control the flow and achieve the optimum flow structures in the mould using UDV. CIFT measurements can provide similar velocity profiles. However, further technical developments in the CIFT sensor signal processing, such as compensating for the effects of the strong and time-varying magnetic field of the electromagnetic brake on CIFT measurements, are necessary if this sensor is to be used for closed-loop control.

    NASA Thesaurus. Volume 2: Access vocabulary

    Get PDF
    The NASA Thesaurus -- Volume 2, Access Vocabulary -- contains an alphabetical listing of all Thesaurus terms (postable and nonpostable) and permutations of all multiword and pseudo-multiword terms. Also included are Other Words (non-Thesaurus terms) consisting of abbreviations, chemical symbols, etc. The permutations and Other Words provide 'access' to the appropriate postable entries in the Thesaurus

    Non-contact measurement machine for freeform optics

    Get PDF
    The performance of high-precision optical systems using spherical optics is limited by aberrations. By applying aspherical and freeform optics, the geometrical aberrations can be reduced or eliminated while at the same time also reducing the required number of components, the size and the weight of the system. New manufacturing techniques enable creation of high-precision freeform surfaces. Suitable metrology (high accuracy, universal, non-contact, large measurement volume and short measurement time) is key in the manufacturing and application of these surfaces, but not yet available. In this thesis, the design, realization and testing of a new metrology instrument is described. This measurement machine is capable of universal, noncontact and fast measurement of freeform optics up to Ø500 mm, with an uncertainty of 30 nm (2s). A cylindrical scanning setup with an optical distance probe has been designed. This concept is non-contact, universal and fast. With a probe with 5 mm range, circular tracks on freeform surfaces can be measured rapidly with minimal dynamics. By applying a metrology frame relative to which the position of the probe and the product are measured, most stage errors are eliminated from the metrology loop. Because the probe is oriented perpendicular to the aspherical best-fit of the surface, the sensitivity to tangential errors is reduced. This allows for the metrology system to be 2D. The machine design can be split into three parts: the motion system, the metrology system and: the non-contact probe. The motion system positions the probe relative to the product in 4 degrees of freedom. The product is mounted on an air bearing spindle (??), and the probe is positioned over it in radial (r), vertical (z) and inclination (¿) direction by the R-stage, Z-stage and ¿- axis, respectively. The motion system provides a sub-micrometer repeatable plane of motion to the probe. The Z-stage is hereto aligned to a vertical plane of the granite base using three air bearings, to obtain a parallel bearing stage configuration. To minimize distortions and hysteresis, the stages have separate position and preload frames. Direct drive motors and high resolution optical scales and encoders are used for positioning. Mechanical brakes are applied while measuring a track, to minimize power dissipation and to exclude encoder, amplifier and EMC noise. The motors, brakes and weight compensation are aligned to the centres of gravity of the R and Zstage. Stabilizing controllers have been designed based on frequency response measurements. The metrology system measures the position of the probe relative to the product in the six critical directions in the plane of motion of the probe (the measurement plane). By focussing a vertical and horizontal interferometer onto the ¿-axis rotor, the displacement of the probe is measured relative to the reference mirrors on the upper metrology frame. Due to the reduced sensitivity in tangential direction at the probe tip, the Abbe criterion is still satisfied. Silicon Carbide is the material of choice for the upper metrology frame, due to its excellent thermal and mechanical properties. Mechanical and thermal analysis of this frame shows nanometer-level stabilities under the expected thermal loads. Simulations of the multi-probe method show capabilities of in process separation of the spindle reference edge profile and the spindle error motion with sub-nanometer uncertainty. The non-contact probe measures the distance between the ¿-axis rotor and the surface under test. A dual stage design is applied, which has 5 mm range, nanometer resolution and 5° unidirectional acceptance angle. This enables the R and Z-stage and ¿-axis to be stationary during the measurement of a circular track on a freeform surface. The design consists of a compact integration of the differential confocal method with an interferometer. The focussing objective is positioned by a flexure guidance with a voice coil actuator. A motion controller finds the surface and keeps the objective focused onto it with some tens of nanometers servo error. The electronics and software are designed to safely operate the 5 axes of the machine and to acquire the signals of all measurement channels. The electronics cabinet contains a real-time processor with many in and outputs, control units for all 5 axes, a safety control unit, a probe laser unit and an interferometry interface. The software consists of three main elements: the trajectory planning, the machine control and the data processing. Emphasis has been on the machine control, in order to safely validate the machine performance and perform basic data-processing. The performance of the machine assembly has been tested by stability, single track and full surface measurements. The measurements focus on repeatability, since this is a key condition before achieving low measurement uncertainty by calibration. The measurements are performed on a Ø100 mm optical flat, which was calibrated by NMi VSL to be flat within 7 nm rms. At standstill, the noise level of the metrology loop is 0.9 nm rms over 0.1 s. When measuring a single track at 1 rev/s, 10 revolutions overlap within 10 nm PV. The repeatability of three measurements of the flat, tilted by 13 µm, is 2 nm rms. The flatness measured by the uncalibrated machine matches the NMi data well. Ten measurements of the flat tilted by 1.6 mm repeat to 3.4 nm rms. A new non-contact measurement machine prototype for freeform optics has been developed. The characteristics desired for a high-end, single piece, freeform optics production environment (high accuracy, universal, non-contact, large measurement volume and short measurement time) have been incorporated into one instrument. The validation measurement results exceed the expectations, especially since they are basically raw data. Future calibrations and development of control and dataprocessing software will certainly further improve these results

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included
    • …
    corecore