226 research outputs found

    Efficient MIMO-OFDM Schemes for Future Terrestrial Digital TV with Unequal Received Powers

    Get PDF
    International audienceThis article investigates the effect of equal and unequal received powers on the performances of different MIMO-OFDM schemes for terrestrial digital TV. More precisely, we focus on three types of non-orthogonal schemes: the BLAST scheme, the Linear Dispersion (LD) code and the Golden code, and we compare their performances to that of Alamouti scheme. Using two receiving antennas, we show that for moderate attenuation on the second antenna and high spectral efficiency, Golden code outperforms other schemes. However, Alamouti scheme presents the best performance for low spectral efficiency and equal received powers or when one antenna is dramatically damaged. When three antennas are used, we show that Golden code offers the highest robustness to power unbalance at the receiving sid

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    A Linear Multi-User Detector for STBC MC-CDMA Systems based on the Adaptive Implementation of the Minimum-Conditional Bit-Error-Rate Criterion and on Genetic Algorithm-assisted MMSE Channel Estimation

    Get PDF
    The implementation of efficient baseband receivers characterized by affordable computational load is a crucial point in the development of transmission systems exploiting diversity in different domains. In this paper, we are proposing a linear multi-user detector for MIMO MC-CDMA systems with Alamouti’s Space-Time Block Coding, inspired by the concept of Minimum Conditional Bit-Error-Rate (MCBER) and relying on Genetic-Algorithm (GA)-assisted MMSE channel estimation. The MCBER combiner has been implemented in adaptive way by using Least-Mean-Square (LMS) optimization. Firstly, we shall analyze the proposed adaptive MCBER MUD receiver with ideal knowledge of Channel Status Information (CSI). Afterwards, we shall consider the complete receiver structure, encompassing also the non-ideal GA-assisted channel estimation. Simulation results evidenced that the proposed MCBER receiver always outperforms state-of-the-art receiver schemes based on EGC and MMSE criterion exploiting the same degree of channel knowledge (i.e. ideal or estimated CSI)

    Performances Concatenated LDPC based STBC-OFDM System and MRC Receivers

    Get PDF
    This paper presents the bit error rate performance of the low density parity check (LDPC) with the concatenation of convolutional channel coding based orthogonal frequency-division-multiplexing (OFDM) using space time block coded (STBC). The OFDM wireless communication system incorporates 3/4-rated convolutional encoder under various digital modulations (BPSK, QPSK and QAM) over an additative white gaussian noise (AWGN) and fading (Raleigh and Rician) channels. At the receiving section of the simulated system, Maximum Ratio combining (MRC) channel equalization technique has been implemented to extract transmitted symbols without enhancing noise power
    • …
    corecore