756 research outputs found

    Optimal Energy Allocation For Delay-Constrained Traffic Over Fading Multiple Access Channels

    Full text link
    In this paper, we consider a multiple-access fading channel where NN users transmit to a single base station (BS) within a limited number of time slots. We assume that each user has a fixed amount of energy available to be consumed over the transmission window. We derive the optimal energy allocation policy for each user that maximizes the total system throughput under two different assumptions on the channel state information. First, we consider the offline allocation problem where the channel states are known a priori before transmission. We solve a convex optimization problem to maximize the sum-throughput under energy and delay constraints. Next, we consider the online allocation problem, where the channels are causally known to the BS and obtain the optimal energy allocation via dynamic programming when the number of users is small. We also develop a suboptimal resource allocation algorithm whose performance is close to the optimal one. Numerical results are presented showing the superiority of the proposed algorithms over baseline algorithms in various scenarios.Comment: IEEE Global Communications Conference: Wireless Communications (Globecom2016 WC

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    Optimal Energy Allocation for Wireless Communications with Energy Harvesting Constraints

    Full text link
    We consider the use of energy harvesters, in place of conventional batteries with fixed energy storage, for point-to-point wireless communications. In addition to the challenge of transmitting in a channel with time selective fading, energy harvesters provide a perpetual but unreliable energy source. In this paper, we consider the problem of energy allocation over a finite horizon, taking into account channel conditions and energy sources that are time varying, so as to maximize the throughput. Two types of side information (SI) on the channel conditions and harvested energy are assumed to be available: causal SI (of the past and present slots) or full SI (of the past, present and future slots). We obtain structural results for the optimal energy allocation, via the use of dynamic programming and convex optimization techniques. In particular, if unlimited energy can be stored in the battery with harvested energy and the full SI is available, we prove the optimality of a water-filling energy allocation solution where the so-called water levels follow a staircase function.Comment: 27 pages, 6 figures, accepted for publications at IEEE Transactions on Signal Processin
    corecore