16 research outputs found

    Distributed estimation over a low-cost sensor network: a review of state-of-the-art

    Get PDF
    Proliferation of low-cost, lightweight, and power efficient sensors and advances in networked systems enable the employment of multiple sensors. Distributed estimation provides a scalable and fault-robust fusion framework with a peer-to-peer communication architecture. For this reason, there seems to be a real need for a critical review of existing and, more importantly, recent advances in the domain of distributed estimation over a low-cost sensor network. This paper presents a comprehensive review of the state-of-the-art solutions in this research area, exploring their characteristics, advantages, and challenging issues. Additionally, several open problems and future avenues of research are highlighted

    Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications

    Get PDF
    By restricting to Gaussian distributions, the optimal Bayesian filtering problem can be transformed into an algebraically simple form, which allows for computationally efficient algorithms. Three problem settings are discussed in this thesis: (1) filtering with Gaussians only, (2) Gaussian mixture filtering for strong nonlinearities, (3) Gaussian process filtering for purely data-driven scenarios. For each setting, efficient algorithms are derived and applied to real-world problems

    Nonlinear Filtering based on Log-homotopy Particle Flow : Methodological Clarification and Numerical Evaluation

    Get PDF
    The state estimation of dynamical systems based on measurements is an ubiquitous problem. This is relevant in applications like robotics, industrial manufacturing, computer vision, target tracking etc. Recursive Bayesian methodology can then be used to estimate the hidden states of a dynamical system. The procedure consists of two steps: a process update based on solving the equations modelling the state evolution, and a measurement update in which the prior knowledge about the system is improved based on the measurements. For most real world systems, both the evolution and the measurement models are nonlinear functions of the system states. Additionally, both models can also be perturbed by random noise sources, which could be non-Gaussian in their nature. Unlike linear Gaussian models, there does not exist any optimal estimation scheme for nonlinear/non-Gaussian scenarios. This thesis investigates a particular method for nonlinear and non-Gaussian data assimilation, termed as the log-homotopy based particle flow. Practical filters based on such flows have been known in the literature as Daum Huang filters (DHF), named after the developers. The key concept behind such filters is the gradual inclusion of measurements to counter a major drawback of single step update schemes like the particle filters i.e. namely the degeneracy. This could refer to a situation where the likelihood function has its probability mass well seperated from the prior density, and/or is peaked in comparison. Conventional sampling or grid based techniques do not perform well under such circumstances and in order to achieve a reasonable accuracy, could incur a high processing cost. DHF is a sampling based scheme, which provides a unique way to tackle this challenge thereby lowering the processing cost. This is achieved by dividing the single measurement update step into multiple sub steps, such that particles originating from their prior locations are graduated incrementally until they reach their final locations. The motion is controlled by a differential equation, which is numerically solved to yield the updated states. DH filters, even though not new in the literature, have not been fully explored in the detail yet. They lack the in-depth analysis that the other contemporary filters have gone through. Especially, the implementation details for the DHF are very application specific. In this work, we have pursued four main objectives. The first objective is the exploration of theoretical concepts behind DHF. Secondly, we build an understanding of the existing implementation framework and highlight its potential shortcomings. As a sub task to this, we carry out a detailed study of important factors that affect the performance of a DHF, and suggest possible improvements for each of those factors. The third objective is to use the improved implementation to derive new filtering algorithms. Finally, we have extended the DHF theory and derived new flow equations and filters to cater for more general scenarios. Improvements in the implementation architecture of a standard DHF is one of the key contributions of this thesis. The scope of the applicability of DHF is expanded by combining it with other schemes like the Sequential Markov chain Monte Carlo and the tensor decomposition based solution of the Fokker Planck equation, resulting in the development of new nonlinear filtering algorithms. The standard DHF, using improved implementation and the newly derived algorithms are tested in challenging simulated test scenarios. Detailed analysis have been carried out, together with the comparison against more established filtering schemes. Estimation error and the processing time are used as important performance parameters. We show that our new filtering algorithms exhibit marked performance improvements over the traditional schemes

    Optimized Filter Design for Non-Differential GPS/IMU Integrated Navigation

    Get PDF
    The endeavours in improving the performance of a conventional non-differential GPS/MEMS IMU tightly-coupled navigation system through filter design, involving nonlinear filtering methods, inertial sensors' stochastic error modelling and the carrier phase implementation, are described and introduced in this thesis. The main work is summarised as follows. Firstly, the performance evaluation of a recently developed nonlinear filtering method, the Cubature Kalman filter (CKF), is analysed based on the Taylor expansion. The theoretical analysis indicates that the nonlinear filtering method CKF shows its benefits only when implemented in a nonlinear system. Accordingly, a nonlinear attitude expression with direction cosine matrix (DCM) is introduced to tightly-coupled navigation system in order to describe the misalignment between the true and the estimated navigation frames. The simulation and experiment results show that the CKF performs better than the extended Kalman filter (EKF) in the unobservable, large misalignment and GPS outage cases when attitude errors accumulate quickly, rendering the psi-angle expression invalid and subsequently showing certain nonlinearity. Secondly, the use of shaping filter theory to model the inertial sensors' stochastic errors in a navigation Kalman filter is also introduced. The coefficients of the inertial sensors' noises are determined from the Allan variance plot. The shaping filter transfer function is deduced from the power spectral density (PSD) of the noises for both stationary and non-stationary processes. All the coloured noises are modelled together in the navigation Kalman filter according to equivalence theory. The coasting performance shows that the shaping filter based modelling method has a similar and even smaller maximum position drift than the conventional 1st-order Markovian process modelling method during GPS outages, thus indicating its effectiveness. Thirdly, according to the methods of dealing with carrier phase ambiguities, tightly-coupled navigation systems with time differenced carrier phase (TDCP) and total carrier phase (TCP) as Kalman filter measurements are deduced. The simulation and experiment results show that the TDCP can improve the velocity estimation accuracy and smooth trajectories, but position accuracy can only achieve the single point positioning (SPP) level if the TDCP is augmented with the pseudo-range, while the TCP based method's position accuracy can reach the sub-meter level. In order to further improve the position accuracy of the TDCP based method, a particle filter (PF) with modified TDCP observation is implemented in the TDCP/IMU tightly-coupled navigation system. The modified TDCP is defined as the carrier phase difference between the reference and observation epochs. The absolute position accuracy is determined by the reference position accuracy. If the reference position is taken from DGPS, the absolute position accuracy can reach the sub-meter level. For TCP/IMU tightly-coupled navigation systems, because the implementation of TCP in the navigation Kalman filter introduces additional states to the state vector, a hybrid CKF+EKF filtering method with the CKF estimating nonlinear states and the EKF estimating linear states, is proposed to maintain the CKF's benefits while reducing the computational load. The navigation results indicate the effectiveness of the method. After applying the improvements, the performance of a non-differential GPS/MEMS IMU tightly-coupled navigation system can be greatly improved

    Directional Estimation for Robotic Beating Heart Surgery

    Get PDF
    In robotic beating heart surgery, a remote-controlled robot can be used to carry out the operation while automatically canceling out the heart motion. The surgeon controlling the robot is shown a stabilized view of the heart. First, we consider the use of directional statistics for estimation of the phase of the heartbeat. Second, we deal with reconstruction of a moving and deformable surface. Third, we address the question of obtaining a stabilized image of the heart

    Particle Gaussian Mixture Filters for Nonlinear Non-Gaussian Bayesian Estimation

    Get PDF
    Nonlinear filtering is the problem of estimating the state of a stochastic nonlinear dynamical system using noisy observations. It is well known that the posterior state estimates in nonlinear problems may assume non-Gaussian multimodal probability densities. We present an unscented Kalman-particle hybrid filtering framework for tracking the three dimensional motion of a space object. The hybrid filtering scheme is designed to provide accurate and consistent estimates when measurements are sparse without incurring a large computational cost. It employs an unscented Kalman filter (UKF) for estimation when measurements are available. When the target is outside the field of view (FOV) of the sensor, it updates the state probability density function (PDF) via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle depletion through a suitably designed filter transition scheme. The performance of the hybrid filtering approach is assessed by simulating two test cases of space objects that are assumed to undergo full three dimensional orbital motion. Having established its performance in the space object tracking problem, we extend the hybrid approach to the general multimodal estimation problem. We propose a particle Gaussian mixture-I (PGM-I) filter for nonlinear estimation that is free of the particle depletion problem inherent to most particle filters. The PGM-I filter employs an ensemble of randomly sampled states for the propagation of state probability density. A Gaussian mixture model (GMM) of the propagated PDF is then recovered by clustering the ensemble. The posterior density is obtained subsequently through a Kalman measurement update of the mixture modes. We prove the convergence in probability of the resultant density to the true filter density assuming exponential forgetting of initial conditions by the true filter. The PGM-I filter is capable of handling the non-Gaussianity of the state PDF arising from dynamics, initial conditions or process noise. A more general estimation scheme titled PGM-II filter that can also handle non-Gaussianity related to measurement update is considered next. The PGM-II filter employs a parallel Markov chain Monte Carlo (MCMC) method to sample from the posterior PDF. The PGM-II filter update is asymptotically exact and does not enforce any assumptions on the number of Gaussian modes. We test the performance of the PGM filters on a number of benchmark filtering problems chosen from recent literature. The PGM filtering performance is compared with that of other general purpose nonlinear filters such as the feedback particle filter and the log homotopy based particle flow filters. The results also indicate that the PGM filters can perform at par with or better than other general purpose nonlinear filters such as the feedback particle filter (FPF) and the log homotopy based particle flow filters. Based on the results, we derive important guidelines on the choice between the PGM-I and PGM-II filters. Furthermore, we conceive an extension of the PGM-I filter, namely the augmented PGM-I filter, for handling the nonlinear/non- Gaussian measurement update without incurring a large computational penalty. A preliminary design for a decentralized PGM-I filter for the distributed estimation problem is also obtained. Finally we conduct a more detailed study on the performance of the parallel MCMC algorithm. It is found that running several parallel Markov chains can lead to significant computational savings in sampling problems that involve multi modal target densities. We also show that the parallel MCMC method can be used to solve global optimization problems

    Approximate Stochastic Optimal Control of Smooth Nonlinear Systems and Piecewise Linear Systems

    Get PDF

    Estimation Algorithms for Non-Gaussian State-Space Models with Application to Positioning

    Get PDF
    State-space models (SSMs) are used to model systems with hidden time-varying state and observable measurement output. In statistical SSMs, the state dynamics is assumed known up to a random term referred to as the process noise, and the measurements contain random measurement noise. Kalman filter (KF) and Rauch– Tung–Striebel smoother (RTSS) are widely-applied closed-form algorithms that provide the parameters of the exact Bayesian filtering and smoothing distributions for discrete-time linear statistical SSMs where the process and measurement noises follow Gaussian distributions. However, when the SSM involves nonlinear functions and/or non-Gaussian noises, the Bayesian filtering and smoothing distributions cannot in general be solved using closed-form algorithms. This thesis addresses approximate Bayesian time-series inference for two positioning-related problems where the assumption of Gaussian noises cannot capture all useful knowledge of the considered system’s statistical properties: map-assisted indoor positioning and positioning using time-delay measurements.The motion constraints imposed by the indoor map are typically incorporated in the position estimate using the particle filter (PF) algorithm. The PF is a Monte Carlo algorithm especially suited for statistical SSMs where the Bayesian posterior distributions are too complicated to be adequately approximated using a well-known distribution family with a low-dimensional parameter space. In mapassisted indoor positioning, the trajectories that cross walls or floor levels get a low probability in the model. In this thesis, improvements to three different PF algorithms for map-assisted indoor positioning are proposed and compared. In the wall-collision PF, weighted random samples, also known as particles, are moved based on inertial sensor measurements, and the particles that collide with the walls are downweighted. When the inertial sensor measurements are very noisy, map information is used to guide the particles such that fewer particles collide with the walls, which implies that more particles contribute to the estimation. When no inertial sensor information is used, the particles are moved along the links of a graph that is dense enough to approximate the set of expected user paths.Time-delay based ranging measurements of e.g. ultra-wideband (UWB) and Global Navigation Satellite Systems (GNSSs) contain occasional positive measurement errors that are large relative to the majority of the errors due to multipath effects and denied line of sight. In this thesis, computationally efficient approximate Bayesian filters and smoothers are proposed for statistical SSMs where the measurement noise follows a skew t -distribution, and the algorithms are applied to positioning using time-delay based ranging measurements. The skew t -distribution is an extension of the Gaussian distribution, which has two additional parameters that affect the heavytailedness and skewness of the distribution. When the measurement noise model is heavy-tailed, the optimal Bayesian algorithm is robust to occasional large measurement errors, and when the model is positively (or negatively) skewed, the algorithms account for the fact that most large errors are known to be positive (or negative). Therefore, the skew t -distribution is more flexible than the Gaussian distribution and captures more statistical features of the error distributions of UWB and GNSS measurements. Furthermore, the skew t -distribution admits a conditionally Gaussian hierarchical form that enables approximating the filtering and smoothing posteriors with Gaussian distributions using variational Bayes (VB) algorithms. The proposed algorithms can thus be computationally efficient compared to Monte Carlo algorithms especially when the state is high-dimensional. It is shown in this thesis that the skew-t filter improves the accuracy of UWB based indoor positioning and GNSS based outdoor positioning in urban areas compared to the extended KF. The skew-t filter’s computational burden is higher than that of the extended KF but of the same magnitude.Tila-avaruusmalleilla mallinnetaan järjestelmiä, joilla on tuntema-ton ajassa muuttuva tila sekä mitatattava ulostulo. Tilastollisissa tila-avaruusmalleissa järjestelmän tilan muutos tunnetaan lukuunotta-matta prosessikohinaksi kutsuttua satunnaista termiä, ja mittauk-set sisältävät satunnaista mittauskohinaa. Kalmanin suodatin sekäRauchin Tungin ja Striebelin siloitin ovat yleisesti käytettyjä sulje-tun muodon estimointialgoritmeja, jotka tuottavat tarkat bayesiläi-set suodatus- ja siloitusjakaumat diskreettiaikaisille lineaarisille ti-lastollisille tila-avaruusmalleille, joissa prosessi- ja mittauskohinatnoudattavat gaussisia jakaumia. Jos käsiteltyyn tila-avaruusmalliinkuitenkin liittyy epälineaarisia funktioita tai epägaussisia kohinoita,bayesiläisiä suodatus- ja siloitusjakaumia ei yleensä voida ratkais-ta suljetun muodon algoritmeilla. Tässä väitöskirjassa tutkitaan ap-proksimatiivista bayesiläistä aikasarjapäättelyä ja sen soveltamistakahteen paikannusongelmaan, joissa gaussinen jakauma ei mallinnariittävän hyvin kaikkea hyödyllistä tietoa tutkitun järjestelmän tilas-tollisista ominaisuuksista: kartta-avusteinen sisätilapaikannus sekäsignaalin kulkuaikamittauksiin perustuva paikannus.Sisätilakartan tuottamat liikerajoitteet voidaan liittää paikkaestimaat-tiin käyttäen partikkelisuodattimeksi kutsuttua algoritmia. Partik-kelisuodatin on Monte Carlo -algoritmi, joka soveltuu erityisesti ti-lastollisille tila-avaruusmalleille, joissa bayesiläisen posteriorijakau-man tiheysfunktio on niin monimutkainen, että sen approksimointitunnetuilla matalan parametridimension jakaumilla ei ole mielekäs-tä. Kartta-avusteisessa sisätilapaikannuksessa reitit, jotka leikkaavatseiniä tai kerrostasoja, saavat muita pienemmät todennäköisyydet.Tässä väitöskirjassa esitetään parannuksia kolmeen eri partikkelisuo-datusalgoritmiin, joita sovelletaan kartta-avusteiseen sisätilapaikan-vnukseen. Seinätörmayssuodattimessa painolliset satunnaisnäytteeteli partikkelit liikkuvat inertiasensorimittausten mukaisesti, ja sei-nään törmäävät partikkelit saavat pienet painot. Kun inertiasensori-mittauksissa on paljon kohinaa, partikkeleita voidaan ohjata siten,että seinätörmäysten määrä vähenee, jolloin suurempi osa partikke-leista vaikuttaa estimaattiin. Kun inertiasensorimittauksia ei käytetälainkaan, sisätilakartta voidaan esittää graafina, jonka kaarilla partik-kelit liikkuvat ja joka on riittävän tiheä approksimoimaan odotetta-vissa olevien reittien joukkoa.Esimerkiksi laajan taajuuskaistan radioista (UWB, ultra-wideband)tai paikannussatelliiteista saatavat radiosignaalin kulkuaikaan pe-rustuvat etäisyysmittaukset taas voivat sisältää monipolkuheijastus-ten ja suoran reitin estymisen aiheuttamia positiivismerkkisiä vir-heitä, jotka ovat huomattavan suuria useimpiin mittausvirheisiinverrattuna. Tässä väitöskirjassa esitetään laskennallisesti tehokkaitabayesiläisen suodattimen ja siloittimen approksimaatioita tilastol-lisille tila-avaruusmalleille, joissa mittauskohina noudattaa vinoat -jakaumaa. Vino t -jakauma on gaussisen jakauman laajennos, jasillä on kaksi lisäparametria, jotka vaikuttavat jakauman paksuhän-täisyyteen ja vinouteen. Kun mittauskohinaa mallintava jakaumaoletetaan paksuhäntäiseksi, optimaalinen bayesiläinen algoritmi eiole herkkä yksittäisille suurille mittausvirheille, ja kun jakauma olete-taan positiivisesti (tai negatiivisesti) vinoksi, algoritmit hyödyntävättietoa, että suurin osa suurista virheistä on positiivisia (tai negatiivi-sia). Vino t -jakauma on siis gaussista jakaumaa joustavampi, ja sillävoidaan mallintaa kulkuaikaan perustuvien mittausten virhejakau-maa tarkemmin kuin gaussisella jakaumalla. Vinolla t -jakaumalla onmyös ehdollisesti gaussinen esitys, joka soveltuu suodatus- ja siloi-tusposteriorien approksimointiin variaatio-Bayes-algoritmilla. Näinollen esitetyt algoritmit voivat olla laskennallisesti tehokkaampiakuin Monte Carlo -algoritmit erityisesti tilan ollessa korkeaulotteinen.Tässä väitöskirjassa näytetään, että vino-t -virhejakauman käyttö pa-rantaa UWB-radioon perustuvan sisätilapaikannuksen tarkkuuttasekä satelliittipohjaisen ulkopaikannuksen tarkkuutta kaupunkiym-päristössä verrattuna laajennettuun Kalmanin suodattimeen. Vino-t -suodatuksen laskennallinen vaativuus on suurempi mutta samaakertaluokkaa kuin laajennetun Kalmanin suodattimen

    Estimation Algorithms for Non-Gaussian State-Space Models with Application to Positioning

    Get PDF
    State-space models (SSMs) are used to model systems with hidden time-varying state and observable measurement output. In statistical SSMs, the state dynamics is assumed known up to a random term referred to as the process noise, and the measurements contain random measurement noise. Kalman filter (KF) and Rauch– Tung–Striebel smoother (RTSS) are widely-applied closed-form algorithms that provide the parameters of the exact Bayesian filtering and smoothing distributions for discrete-time linear statistical SSMs where the process and measurement noises follow Gaussian distributions. However, when the SSM involves nonlinear functions and/or non-Gaussian noises, the Bayesian filtering and smoothing distributions cannot in general be solved using closed-form algorithms. This thesis addresses approximate Bayesian time-series inference for two positioning-related problems where the assumption of Gaussian noises cannot capture all useful knowledge of the considered system’s statistical properties: map-assisted indoor positioning and positioning using time-delay measurements.The motion constraints imposed by the indoor map are typically incorporated in the position estimate using the particle filter (PF) algorithm. The PF is a Monte Carlo algorithm especially suited for statistical SSMs where the Bayesian posterior distributions are too complicated to be adequately approximated using a well-known distribution family with a low-dimensional parameter space. In mapassisted indoor positioning, the trajectories that cross walls or floor levels get a low probability in the model. In this thesis, improvements to three different PF algorithms for map-assisted indoor positioning are proposed and compared. In the wall-collision PF, weighted random samples, also known as particles, are moved based on inertial sensor measurements, and the particles that collide with the walls are downweighted. When the inertial sensor measurements are very noisy, map information is used to guide the particles such that fewer particles collide with the walls, which implies that more particles contribute to the estimation. When no inertial sensor information is used, the particles are moved along the links of a graph that is dense enough to approximate the set of expected user paths.Time-delay based ranging measurements of e.g. ultra-wideband (UWB) and Global Navigation Satellite Systems (GNSSs) contain occasional positive measurement errors that are large relative to the majority of the errors due to multipath effects and denied line of sight. In this thesis, computationally efficient approximate Bayesian filters and smoothers are proposed for statistical SSMs where the measurement noise follows a skew t -distribution, and the algorithms are applied to positioning using time-delay based ranging measurements. The skew t -distribution is an extension of the Gaussian distribution, which has two additional parameters that affect the heavytailedness and skewness of the distribution. When the measurement noise model is heavy-tailed, the optimal Bayesian algorithm is robust to occasional large measurement errors, and when the model is positively (or negatively) skewed, the algorithms account for the fact that most large errors are known to be positive (or negative). Therefore, the skew t -distribution is more flexible than the Gaussian distribution and captures more statistical features of the error distributions of UWB and GNSS measurements. Furthermore, the skew t -distribution admits a conditionally Gaussian hierarchical form that enables approximating the filtering and smoothing posteriors with Gaussian distributions using variational Bayes (VB) algorithms. The proposed algorithms can thus be computationally efficient compared to Monte Carlo algorithms especially when the state is high-dimensional. It is shown in this thesis that the skew-t filter improves the accuracy of UWB based indoor positioning and GNSS based outdoor positioning in urban areas compared to the extended KF. The skew-t filter’s computational burden is higher than that of the extended KF but of the same magnitude.Tila-avaruusmalleilla mallinnetaan järjestelmiä, joilla on tuntema-ton ajassa muuttuva tila sekä mitatattava ulostulo. Tilastollisissa tila-avaruusmalleissa järjestelmän tilan muutos tunnetaan lukuunotta-matta prosessikohinaksi kutsuttua satunnaista termiä, ja mittauk-set sisältävät satunnaista mittauskohinaa. Kalmanin suodatin sekäRauchin Tungin ja Striebelin siloitin ovat yleisesti käytettyjä sulje-tun muodon estimointialgoritmeja, jotka tuottavat tarkat bayesiläi-set suodatus- ja siloitusjakaumat diskreettiaikaisille lineaarisille ti-lastollisille tila-avaruusmalleille, joissa prosessi- ja mittauskohinatnoudattavat gaussisia jakaumia. Jos käsiteltyyn tila-avaruusmalliinkuitenkin liittyy epälineaarisia funktioita tai epägaussisia kohinoita,bayesiläisiä suodatus- ja siloitusjakaumia ei yleensä voida ratkais-ta suljetun muodon algoritmeilla. Tässä väitöskirjassa tutkitaan ap-proksimatiivista bayesiläistä aikasarjapäättelyä ja sen soveltamistakahteen paikannusongelmaan, joissa gaussinen jakauma ei mallinnariittävän hyvin kaikkea hyödyllistä tietoa tutkitun järjestelmän tilas-tollisista ominaisuuksista: kartta-avusteinen sisätilapaikannus sekäsignaalin kulkuaikamittauksiin perustuva paikannus.Sisätilakartan tuottamat liikerajoitteet voidaan liittää paikkaestimaat-tiin käyttäen partikkelisuodattimeksi kutsuttua algoritmia. Partik-kelisuodatin on Monte Carlo -algoritmi, joka soveltuu erityisesti ti-lastollisille tila-avaruusmalleille, joissa bayesiläisen posteriorijakau-man tiheysfunktio on niin monimutkainen, että sen approksimointitunnetuilla matalan parametridimension jakaumilla ei ole mielekäs-tä. Kartta-avusteisessa sisätilapaikannuksessa reitit, jotka leikkaavatseiniä tai kerrostasoja, saavat muita pienemmät todennäköisyydet.Tässä väitöskirjassa esitetään parannuksia kolmeen eri partikkelisuo-datusalgoritmiin, joita sovelletaan kartta-avusteiseen sisätilapaikan-vnukseen. Seinätörmayssuodattimessa painolliset satunnaisnäytteeteli partikkelit liikkuvat inertiasensorimittausten mukaisesti, ja sei-nään törmäävät partikkelit saavat pienet painot. Kun inertiasensori-mittauksissa on paljon kohinaa, partikkeleita voidaan ohjata siten,että seinätörmäysten määrä vähenee, jolloin suurempi osa partikke-leista vaikuttaa estimaattiin. Kun inertiasensorimittauksia ei käytetälainkaan, sisätilakartta voidaan esittää graafina, jonka kaarilla partik-kelit liikkuvat ja joka on riittävän tiheä approksimoimaan odotetta-vissa olevien reittien joukkoa.Esimerkiksi laajan taajuuskaistan radioista (UWB, ultra-wideband)tai paikannussatelliiteista saatavat radiosignaalin kulkuaikaan pe-rustuvat etäisyysmittaukset taas voivat sisältää monipolkuheijastus-ten ja suoran reitin estymisen aiheuttamia positiivismerkkisiä vir-heitä, jotka ovat huomattavan suuria useimpiin mittausvirheisiinverrattuna. Tässä väitöskirjassa esitetään laskennallisesti tehokkaitabayesiläisen suodattimen ja siloittimen approksimaatioita tilastol-lisille tila-avaruusmalleille, joissa mittauskohina noudattaa vinoat -jakaumaa. Vino t -jakauma on gaussisen jakauman laajennos, jasillä on kaksi lisäparametria, jotka vaikuttavat jakauman paksuhän-täisyyteen ja vinouteen. Kun mittauskohinaa mallintava jakaumaoletetaan paksuhäntäiseksi, optimaalinen bayesiläinen algoritmi eiole herkkä yksittäisille suurille mittausvirheille, ja kun jakauma olete-taan positiivisesti (tai negatiivisesti) vinoksi, algoritmit hyödyntävättietoa, että suurin osa suurista virheistä on positiivisia (tai negatiivi-sia). Vino t -jakauma on siis gaussista jakaumaa joustavampi, ja sillävoidaan mallintaa kulkuaikaan perustuvien mittausten virhejakau-maa tarkemmin kuin gaussisella jakaumalla. Vinolla t -jakaumalla onmyös ehdollisesti gaussinen esitys, joka soveltuu suodatus- ja siloi-tusposteriorien approksimointiin variaatio-Bayes-algoritmilla. Näinollen esitetyt algoritmit voivat olla laskennallisesti tehokkaampiakuin Monte Carlo -algoritmit erityisesti tilan ollessa korkeaulotteinen.Tässä väitöskirjassa näytetään, että vino-t -virhejakauman käyttö pa-rantaa UWB-radioon perustuvan sisätilapaikannuksen tarkkuuttasekä satelliittipohjaisen ulkopaikannuksen tarkkuutta kaupunkiym-päristössä verrattuna laajennettuun Kalmanin suodattimeen. Vino-t -suodatuksen laskennallinen vaativuus on suurempi mutta samaakertaluokkaa kuin laajennetun Kalmanin suodattimen
    corecore