1,206 research outputs found

    Polytope of Correct (Linear Programming) Decoding and Low-Weight Pseudo-Codewords

    Full text link
    We analyze Linear Programming (LP) decoding of graphical binary codes operating over soft-output, symmetric and log-concave channels. We show that the error-surface, separating domain of the correct decoding from domain of the erroneous decoding, is a polytope. We formulate the problem of finding the lowest-weight pseudo-codeword as a non-convex optimization (maximization of a convex function) over a polytope, with the cost function defined by the channel and the polytope defined by the structure of the code. This formulation suggests new provably convergent heuristics for finding the lowest weight pseudo-codewords improving in quality upon previously discussed. The algorithm performance is tested on the example of the Tanner [155, 64, 20] code over the Additive White Gaussian Noise (AWGN) channel.Comment: 6 pages, 2 figures, accepted for IEEE ISIT 201

    Secrecy Energy Efficiency of MIMOME Wiretap Channels with Full-Duplex Jamming

    Full text link
    Full-duplex (FD) jamming transceivers are recently shown to enhance the information security of wireless communication systems by simultaneously transmitting artificial noise (AN) while receiving information. In this work, we investigate if FD jamming can also improve the systems secrecy energy efficiency (SEE) in terms of securely communicated bits-per- Joule, when considering the additional power used for jamming and self-interference (SI) cancellation. Moreover, the degrading effect of the residual SI is also taken into account. In this regard, we formulate a set of SEE maximization problems for a FD multiple-input-multiple-output multiple-antenna eavesdropper (MIMOME) wiretap channel, considering both cases where exact or statistical channel state information (CSI) is available. Due to the intractable problem structure, we propose iterative solutions in each case with a proven convergence to a stationary point. Numerical simulations indicate only a marginal SEE gain, through the utilization of FD jamming, for a wide range of system conditions. However, when SI can efficiently be mitigated, the observed gain is considerable for scenarios with a small distance between the FD node and the eavesdropper, a high Signal-to-noise ratio (SNR), or for a bidirectional FD communication setup.Comment: IEEE Transactions on Communication
    • …
    corecore