496 research outputs found

    Robust Low-Rank LCMV Beamforming Algorithms Based on Joint Iterative Optimization Strategies

    Full text link
    This chapter presents reduced-rank linearly constrained minimum variance (LCMV) algorithms based on the concept of joint iterative optimization of parameters. The proposed reduced-rank scheme is based on a constrained robust joint iterative optimization (RJIO) of parameters according to the minimum variance criterion. The robust optimization procedure adjusts the parameters of a rank-reduction matrix, a reduced-rank beamformer and the diagonal loading in an alternating manner. LCMV expressions are developed for the design of the rank-reduction matrix and the reduced-rank beamformer. Stochastic gradient and recursive least-squares adaptive algorithms are then devised for an efficient implementation of the RJIO robust beamforming technique. Simulations for a application in the presence of uncertainties show that the RJIO scheme and algorithms outperform in convergence and tracking performances existing algorithms while requiring a comparable complexity.Comment: 7 figures. arXiv admin note: substantial text overlap with arXiv:1205.439

    Study of Robust Distributed Beamforming Based on Cross-Correlation and Subspace Projection Techniques

    Full text link
    In this work, we present a novel robust distributed beamforming (RDB) approach to mitigate the effects of channel errors on wireless networks equipped with relays based on the exploitation of the cross-correlation between the received data from the relays at the destination and the system output. The proposed RDB method, denoted cross-correlation and subspace projection (CCSP) RDB, considers a total relay transmit power constraint in the system and the objective of maximizing the output signal-to-interference-plus-noise ratio (SINR). The relay nodes are equipped with an amplify-and-forward (AF) protocol and we assume that the channel state information (CSI) is imperfectly known at the relays and there is no direct link between the sources and the destination. The CCSP does not require any costly optimization procedure and simulations show an excellent performance as compared to previously reported algorithms.Comment: 3 figures, 7 pages. arXiv admin note: text overlap with arXiv:1707.00953

    Adaptive Reduced-Rank Constrained Constant Modulus Beamforming Algorithms Based on Joint Iterative Optimization of Filters

    Full text link
    This paper proposes a robust reduced-rank scheme for adaptive beamforming based on joint iterative optimization (JIO) of adaptive filters. The novel scheme is designed according to the constant modulus (CM) criterion subject to different constraints, and consists of a bank of full-rank adaptive filters that forms the transformation matrix, and an adaptive reduced-rank filter that operates at the output of the bank of filters to estimate the desired signal. We describe the proposed scheme for both the direct-form processor (DFP) and the generalized sidelobe canceller (GSC) structures. For each structure, we derive stochastic gradient (SG) and recursive least squares (RLS) algorithms for its adaptive implementation. The Gram-Schmidt (GS) technique is applied to the adaptive algorithms for reformulating the transformation matrix and improving performance. An automatic rank selection technique is developed and employed to determine the most adequate rank for the derived algorithms. The complexity and convexity analyses are carried out. Simulation results show that the proposed algorithms outperform the existing full-rank and reduced-rank methods in convergence and tracking performance.Comment: 10 figures; IEEE Transactions on Signal Processing, 201

    Study of BEM-Type Channel Estimation Techniques for 5G Multicarrier Systems

    Full text link
    In this paper, we investigate channel estimation techniques for 5G multicarrier systems. Due to the characteristics of the 5G application scenarios, channel estimation techniques have been tested in Orthogonal Frequency Division Multiplexing (OFDM) and Generalized Frequency Division Multiplexing (GFDM) systems. The orthogonality between subcarriers in OFDM systems permits inserting and extracting pilots without interference. However, due to pulse shaping, subcarriers in GFDM are no longer orthogonal and interfere with each other. Due to such interference, the channel estimation for GFDM is not trivial. A robust and low-complexity channel estimator can be obtained by combining a minimum mean-square error (MMSE) regularization and the basis expansion model (BEM) approach. In this work, we develop a BEM-type channel estimator along with a strategy to obtain the covariance matrix of the BEM coefficients. Simulations show that the BEM-type channel estimation shows performance close to that of the linear MMSE (LMMSE), even though there is no need to know the channel power delay profile, and its complexity is low.Comment: 2 figures, 7 page

    Coordinate Tomlinson-Harashima Precoding Design for Overloaded Multi-user MIMO Systems

    Full text link
    Tomlinson-Harashima precoding (THP) is a nonlinear processing technique employed at the transmit side to implement the concept of dirty paper coding (DPC). The perform of THP, however, is restricted by the dimensionality constraint that the number of transmit antennas has to be greater or equal to the total number of receive antennas. In this paper, we propose an iterative coordinate THP algorithm for the scenarios in which the total number of receive antennas is larger than the number of transmit antennas. The proposed algorithm is implemented on two types of THP structures, the decentralized THP (dTHP) with diagonal weighted filters at the receivers of the users, and the centralized THP (cTHP) with diagonal weighted filter at the transmitter. Simulation results show that a much better bit error rate (BER) and sum-rate performances can be achieved by the proposed iterative coordinate THP compared to the previous linear art.Comment: 3 figures, 6 pages, ISWCS 2014. arXiv admin note: text overlap with arXiv:1401.475

    Sparsity-Based STAP Design Based on Alternating Direction Method with Gain/Phase Errors

    Full text link
    We present a novel sparsity-based space-time adaptive processing (STAP) technique based on the alternating direction method to overcome the severe performance degradation caused by array gain/phase (GP) errors. The proposed algorithm reformulates the STAP problem as a joint optimization problem of the spatio-Doppler profile and GP errors in both single and multiple snapshots, and introduces a target detector using the reconstructed spatio-Doppler profiles. Simulations are conducted to illustrate the benefits of the proposed algorithm.Comment: 7 figures, 1 tabl

    Low-Complexity Variable Forgetting Factor Constrained Constant Modulus RLS Algorithm for Adaptive Beamforming

    Full text link
    In this paper, a recursive least squares (RLS) based blind adaptive beamforming algorithm that features a new variable forgetting factor (VFF) mechanism is presented. The beamformer is designed according to the constrained constant modulus (CCM) criterion, and the proposed adaptive algorithm operates in the generalized sidelobe canceler (GSC) structure. A detailed study of its operating properties is carried out, including a convexity analysis and a mean squared error (MSE) analysis of its steady-state behavior. The results of numerical experiments demonstrate that the proposed VFF mechanism achieves a superior learning and tracking performance compared to other VFF mechanisms.Comment: 10 pages, 4 figures, Elsevier Signal Processing, 201

    Study of Efficient Robust Adaptive Beamforming Algorithms Based on Shrinkage Techniques

    Full text link
    This paper proposes low-complexity robust adaptive beamforming (RAB) techniques based on shrinkage methods. We firstly briefly review a Low-Complexity Shrinkage-Based Mismatch Estimation (LOCSME) batch algorithm to estimate the desired signal steering vector mismatch, in which the interference-plus-noise covariance (INC) matrix is also estimated with a recursive matrix shrinkage method. Then we develop low complexity adaptive robust version of the conjugate gradient (CG) algorithm to both estimate the steering vector mismatch and update the beamforming weights. A computational complexity study of the proposed and existing algorithms is carried out. Simulations are conducted in local scattering scenarios and comparisons to existing RAB techniques are provided.Comment: 9 pages, 2 figures. arXiv admin note: text overlap with arXiv:1505.0678

    Study of Joint MSINR and Relay Selection Algorithms for Distributed Beamforming

    Full text link
    This paper presents joint maximum signal-to-interference-plus-noise ratio (MSINR) and relay selection algorithms for distributed beamforming. We propose a joint MSINR and restricted greedy search relay selection (RGSRS) algorithm with a total relay transmit power constraint that iteratively optimizes both the beamforming weights at the relays nodes, maximizing the SINR at the destination. Specifically, we devise a relay selection scheme that based on greedy search and compare it to other schemes like restricted random relay selection (RRRS) and restricted exhaustive search relay selection (RESRS). A complexity analysis is provided and simulation results show that the proposed joint MSINR and RGSRS algorithm achieves excellent bit error rate (BER) and SINR performances.Comment: 7 pages, 2 figures. arXiv admin note: text overlap with arXiv:1707.0095

    Reduced-rank Adaptive Constrained Constant Modulus Beamforming Algorithms based on Joint Iterative Optimization of Filters

    Full text link
    This paper proposes a reduced-rank scheme for adaptive beamforming based on the constrained joint iterative optimization of filters. We employ this scheme to devise two novel reduced-rank adaptive algorithms according to the constant modulus (CM) criterion with different constraints. The first devised algorithm is formulated as a constrained joint iterative optimization of a projection matrix and a reduced-rank filter with respect to the CM criterion subject to a constraint on the array response. The constrained constant modulus (CCM) expressions for the projection matrix and the reduced-rank weight vector are derived, and a low-complexity adaptive algorithm is presented to jointly estimate them for implementation. The second proposed algorithm is extended from the first one and implemented according to the CM criterion subject to a constraint on the array response and an orthogonal constraint on the projection matrix. The Gram-Schmidt (GS) technique is employed to achieve this orthogonal constraint and improve the performance. Simulation results are given to show superior performance of the proposed algorithms in comparison with existing methods.Comment: 4 figure
    • …
    corecore