29,352 research outputs found

    Autotuning Stencil Computations with Structural Ordinal Regression Learning

    Get PDF
    Stencil computations expose a large and complex space of equivalent implementations. These computations often rely on autotuning techniques, based on iterative compilation or machine learning (ML), to achieve high performance. Iterative compilation autotuning is a challenging and time-consuming task that may be unaffordable in many scenarios. Meanwhile, traditional ML autotuning approaches exploiting classification algorithms (such as neural networks and support vector machines) face difficulties in capturing all features of large search spaces. This paper proposes a new way of automatically tuning stencil computations based on structural learning. By organizing the training data in a set of partially-sorted samples (i.e., rankings), the problem is formulated as a ranking prediction model, which translates to an ordinal regression problem. Our approach can be coupled with an iterative compilation method or used as a standalone autotuner. We demonstrate its potential by comparing it with state-of-the-art iterative compilation methods on a set of nine stencil codes and by analyzing the quality of the obtained ranking in terms of Kendall rank correlation coefficients

    Less is More: Exploiting the Standard Compiler Optimization Levels for Better Performance and Energy Consumption

    Get PDF
    This paper presents the interesting observation that by performing fewer of the optimizations available in a standard compiler optimization level such as -O2, while preserving their original ordering, significant savings can be achieved in both execution time and energy consumption. This observation has been validated on two embedded processors, namely the ARM Cortex-M0 and the ARM Cortex-M3, using two different versions of the LLVM compilation framework; v3.8 and v5.0. Experimental evaluation with 71 embedded benchmarks demonstrated performance gains for at least half of the benchmarks for both processors. An average execution time reduction of 2.4% and 5.3% was achieved across all the benchmarks for the Cortex-M0 and Cortex-M3 processors, respectively, with execution time improvements ranging from 1% up to 90% over the -O2. The savings that can be achieved are in the same range as what can be achieved by the state-of-the-art compilation approaches that use iterative compilation or machine learning to select flags or to determine phase orderings that result in more efficient code. In contrast to these time consuming and expensive to apply techniques, our approach only needs to test a limited number of optimization configurations, less than 64, to obtain similar or even better savings. Furthermore, our approach can support multi-criteria optimization as it targets execution time, energy consumption and code size at the same time.Comment: 15 pages, 3 figures, 71 benchmarks used for evaluatio

    PENCIL: Towards a Platform-Neutral Compute Intermediate Language for DSLs

    Full text link
    We motivate the design and implementation of a platform-neutral compute intermediate language (PENCIL) for productive and performance-portable accelerator programming
    • …
    corecore