28 research outputs found

    Message Passing in C-RAN: Joint User Activity and Signal Detection

    Full text link
    In cloud radio access network (C-RAN), remote radio heads (RRHs) and users are uniformly distributed in a large area such that the channel matrix can be considered as sparse. Based on this phenomenon, RRHs only need to detect the relatively strong signals from nearby users and ignore the weak signals from far users, which is helpful to develop low-complexity detection algorithms without causing much performance loss. However, before detection, RRHs require to obtain the realtime user activity information by the dynamic grant procedure, which causes the enormous latency. To address this issue, in this paper, we consider a grant-free C-RAN system and propose a low-complexity Bernoulli-Gaussian message passing (BGMP) algorithm based on the sparsified channel, which jointly detects the user activity and signal. Since active users are assumed to transmit Gaussian signals at any time, the user activity can be regarded as a Bernoulli variable and the signals from all users obey a Bernoulli-Gaussian distribution. In the BGMP, the detection functions for signals are designed with respect to the Bernoulli-Gaussian variable. Numerical results demonstrate the robustness and effectivity of the BGMP. That is, for different sparsified channels, the BGMP can approach the mean-square error (MSE) of the genie-aided sparse minimum mean-square error (GA-SMMSE) which exactly knows the user activity information. Meanwhile, the fast convergence and strong recovery capability for user activity of the BGMP are also verified.Comment: Conference, 6 pages, 7 figures, accepted by IEEE Globecom 201

    An Adaptive and Robust Deep Learning Framework for THz Ultra-Massive MIMO Channel Estimation

    Full text link
    Terahertz ultra-massive MIMO (THz UM-MIMO) is envisioned as one of the key enablers of 6G wireless networks, for which channel estimation is highly challenging. Traditional analytical estimation methods are no longer effective, as the enlarged array aperture and the small wavelength result in a mixture of far-field and near-field paths, constituting a hybrid-field channel. Deep learning (DL)-based methods, despite the competitive performance, generally lack theoretical guarantees and scale poorly with the size of the array. In this paper, we propose a general DL framework for THz UM-MIMO channel estimation, which leverages existing iterative channel estimators and is with provable guarantees. Each iteration is implemented by a fixed point network (FPN), consisting of a closed-form linear estimator and a DL-based non-linear estimator. The proposed method perfectly matches the THz UM-MIMO channel estimation due to several unique advantages. First, the complexity is low and adaptive. It enjoys provable linear convergence with a low per-iteration cost and monotonically increasing accuracy, which enables an adaptive accuracy-complexity tradeoff. Second, it is robust to practical distribution shifts and can directly generalize to a variety of heavily out-of-distribution scenarios with almost no performance loss, which is suitable for the complicated THz channel conditions. For practical usage, the proposed framework is further extended to wideband THz UM-MIMO systems with beam squint effect. Theoretical analysis and extensive simulation results are provided to illustrate the advantages over the state-of-the-art methods in estimation accuracy, convergence rate, complexity, and robustness.Comment: 15 pages, 11 figures, 5 tables, accepted by IEEE Journal of Selected Topics in Signal Processing (JSTSP

    Low-Complexity Downlink Channel Estimation in mmWave Multiple-Input Single-Output Systems

    Get PDF
    This paper tackles the problem of channel estimation in mmWave multiple-input single-output systems, where users are equipped with single-antenna receivers. By leveraging broadcast transmissions in the downlink channel, two novel low-complexity estimation approaches are devised, able to operate even in presence of a reduced number of transmit antennas or limited bandwidth. Numerical results show that the proposed algorithms provide accurate estimates of the channel parameters, achieving at the same time about 50% complexity reduction compared to existing approaches
    corecore