377 research outputs found

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Channel Estimation, Carrier Recovery, and Data Detection in the Presence of Phase Noise in OFDM Relay Systems

    Get PDF
    Due to its time-varying nature, oscillator phase noise can significantly degrade the performance of channel estimation, carrier recovery, and data detection blocks in high-speed wireless communication systems. In this paper, we analyze joint channel, carrier frequency offset (CFO), and phase noise estimation plus data detection in orthogonal frequency division multiplexing (OFDM) relay systems. To achieve this goal, a detailed transmission framework involving both training and data symbols is presented. In the data transmission phase, a combtype OFDM symbol consisting of both pilots and data symbols is proposed to track phase noise over an OFDM frame. Next, a novel algorithm that applies the training symbols to jointly estimate the channel responses, CFO, and phase noise based on the maximum a posteriori criterion is proposed. Additionally, a new hybrid Cramér-Rao lower bound for evaluating the performance of channel estimation and carrier recovery algorithms in OFDM relay networks is derived. Finally, an iterative receiver for joint phase noise estimation and data detection at the destination node is derived. Extensive simulations demonstrate that the application of the proposed estimation and receiver blocks significantly improves the performance of OFDM relay networks in the presence of phase noise

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Semiblind iterative data detection for OFDM systems with CFO and doubly selective channels

    Get PDF
    Data detection for OFDM systems over unknown doubly selective channels (DSCs) and carrier frequency offset (CFO) is investigated. A semiblind iterative detection algorithm is developed based on the expectation-maximization (EM) algorithm. It iteratively estimates the CFO, channel and recovers the unknown data using only limited number of pilot subcarriers in one OFDM symbol. In addition, efficient initial CFO and channel estimates are also derived based on approximated maximum likelihood (ML) and minimum mean square error (MMSE) criteria respectively. Simulation results show that the proposed data detection algorithm converges in a few iterations and moreover, its performance is close to the ideal case with perfect CFO and channel state information. © 2010 IEEE.published_or_final_versio
    • …
    corecore