184 research outputs found

    Zero-Convex Functions, Perturbation Resilience, and Subgradient Projections for Feasibility-Seeking Methods

    Full text link
    The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, we show that the sequential subgradient projection method is perturbation resilient. By this we mean that under appropriate conditions the sequence generated by the method converges weakly, and sometimes also strongly, to a point in the intersection of the given subsets of the feasibility problem, despite certain perturbations which are allowed in each iterative step. Unlike previous works on solving the convex feasibility problem, the involved functions, which induce the feasibility problem's subsets, need not be convex. Instead, we allow them to belong to a wider and richer class of functions satisfying a weaker condition, that we call "zero-convexity". This class, which is introduced and discussed here, holds a promise to solve optimization problems in various areas, especially in non-smooth and non-convex optimization. The relevance of this study to approximate minimization and to the recent superiorization methodology for constrained optimization is explained.Comment: Mathematical Programming Series A, accepted for publicatio

    A Bregman-Kaczmarz method for nonlinear systems of equations

    Full text link
    We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements

    An Efficient HPR Algorithm for the Wasserstein Barycenter Problem with O(Dim(P)/ε)O({Dim(P)}/\varepsilon) Computational Complexity

    Full text link
    In this paper, we propose and analyze an efficient Halpern-Peaceman-Rachford (HPR) algorithm for solving the Wasserstein barycenter problem (WBP) with fixed supports. While the Peaceman-Rachford (PR) splitting method itself may not be convergent for solving the WBP, the HPR algorithm can achieve an O(1/ε)O(1/\varepsilon) non-ergodic iteration complexity with respect to the Karush-Kuhn-Tucker (KKT) residual. More interestingly, we propose an efficient procedure with linear time computational complexity to solve the linear systems involved in the subproblems of the HPR algorithm. As a consequence, the HPR algorithm enjoys an O(Dim(P)/ε)O({\rm Dim(P)}/\varepsilon) non-ergodic computational complexity in terms of flops for obtaining an ε\varepsilon-optimal solution measured by the KKT residual for the WBP, where Dim(P){\rm Dim(P)} is the dimension of the variable of the WBP. This is better than the best-known complexity bound for the WBP. Moreover, the extensive numerical results on both the synthetic and real data sets demonstrate the superior performance of the HPR algorithm for solving the large-scale WBP

    Convergence in Distribution of Randomized Algorithms: The Case of Partially Separable Optimization

    Full text link
    We present a Markov-chain analysis of blockwise-stochastic algorithms for solving partially block-separable optimization problems. Our main contributions to the extensive literature on these methods are statements about the Markov operators and distributions behind the iterates of stochastic algorithms, and in particular the regularity of Markov operators and rates of convergence of the distributions of the corresponding Markov chains. This provides a detailed characterization of the moments of the sequences beyond just the expected behavior. This also serves as a case study of how randomization restores favorable properties to algorithms that iterations of only partial information destroys. We demonstrate this on stochastic blockwise implementations of the forward-backward and Douglas-Rachford algorithms for nonconvex (and, as a special case, convex), nonsmooth optimization.Comment: 25 pages, 43 reference

    Postquantum Br\`{e}gman relative entropies and nonlinear resource theories

    Full text link
    We introduce the family of postquantum Br\`{e}gman relative entropies, based on nonlinear embeddings into reflexive Banach spaces (with examples given by reflexive noncommutative Orlicz spaces over semi-finite W*-algebras, nonassociative Lp_p spaces over semi-finite JBW-algebras, and noncommutative Lp_p spaces over arbitrary W*-algebras). This allows us to define a class of geometric categories for nonlinear postquantum inference theory (providing an extension of Chencov's approach to foundations of statistical inference), with constrained maximisations of Br\`{e}gman relative entropies as morphisms and nonlinear images of closed convex sets as objects. Further generalisation to a framework for nonlinear convex operational theories is developed using a larger class of morphisms, determined by Br\`{e}gman nonexpansive operations (which provide a well-behaved family of Mielnik's nonlinear transmitters). As an application, we derive a range of nonlinear postquantum resource theories determined in terms of this class of operations.Comment: v2: several corrections and improvements, including an extension to the postquantum (generally) and JBW-algebraic (specifically) cases, a section on nonlinear resource theories, and more informative paper's titl
    • …
    corecore