39,620 research outputs found

    Efficient Iterative Processing in the SciDB Parallel Array Engine

    Full text link
    Many scientific data-intensive applications perform iterative computations on array data. There exist multiple engines specialized for array processing. These engines efficiently support various types of operations, but none includes native support for iterative processing. In this paper, we develop a model for iterative array computations and a series of optimizations. We evaluate the benefits of an optimized, native support for iterative array processing on the SciDB engine and real workloads from the astronomy domain

    Developing numerical libraries in Java

    Full text link
    The rapid and widespread adoption of Java has created a demand for reliable and reusable mathematical software components to support the growing number of compute-intensive applications now under development, particularly in science and engineering. In this paper we address practical issues of the Java language and environment which have an effect on numerical library design and development. Benchmarks which illustrate the current levels of performance of key numerical kernels on a variety of Java platforms are presented. Finally, a strategy for the development of a fundamental numerical toolkit for Java is proposed and its current status is described.Comment: 11 pages. Revised version of paper presented to the 1998 ACM Conference on Java for High Performance Network Computing. To appear in Concurrency: Practice and Experienc

    Explicit Model Checking of Very Large MDP using Partitioning and Secondary Storage

    Full text link
    The applicability of model checking is hindered by the state space explosion problem in combination with limited amounts of main memory. To extend its reach, the large available capacities of secondary storage such as hard disks can be exploited. Due to the specific performance characteristics of secondary storage technologies, specialised algorithms are required. In this paper, we present a technique to use secondary storage for probabilistic model checking of Markov decision processes. It combines state space exploration based on partitioning with a block-iterative variant of value iteration over the same partitions for the analysis of probabilistic reachability and expected-reward properties. A sparse matrix-like representation is used to store partitions on secondary storage in a compact format. All file accesses are sequential, and compression can be used without affecting runtime. The technique has been implemented within the Modest Toolset. We evaluate its performance on several benchmark models of up to 3.5 billion states. In the analysis of time-bounded properties on real-time models, our method neutralises the state space explosion induced by the time bound in its entirety.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-24953-7_1

    An odyssey into local refinement and multilevel preconditioning III: Implementation and numerical experiments

    Get PDF
    In this paper, we examine a number of additive and multiplicative multilevel iterative methods and preconditioners in the setting of two-dimensional local mesh refinement. While standard multilevel methods are effective for uniform refinement-based discretizations of elliptic equations, they tend to be less effective for algebraic systems, which arise from discretizations on locally refined meshes, losing their optimal behavior in both storage and computational complexity. Our primary focus here is on Bramble, Pasciak, and Xu (BPX)-style additive and multiplicative multilevel preconditioners, and on various stabilizations of the additive and multiplicative hierarchical basis (HB) method, and their use in the local mesh refinement setting. In parts I and II of this trilogy, it was shown that both BPX and wavelet stabilizations of HB have uniformly bounded condition numbers on several classes of locally refined two- and three-dimensional meshes based on fairly standard (and easily implementable) red and red-green mesh refinement algorithms. In this third part of the trilogy, we describe in detail the implementation of these types of algorithms, including detailed discussions of the data structures and traversal algorithms we employ for obtaining optimal storage and computational complexity in our implementations. We show how each of the algorithms can be implemented using standard data types, available in languages such as C and FORTRAN, so that the resulting algorithms have optimal (linear) storage requirements, and so that the resulting multilevel method or preconditioner can be applied with optimal (linear) computational costs. We have successfully used these data structure ideas for both MATLAB and C implementations using the FEtk, an open source finite element software package. We finish the paper with a sequence of numerical experiments illustrating the effectiveness of a number of BPX and stabilized HB variants for several examples requiring local refinement
    • …
    corecore