356 research outputs found

    An assessment of the connection machine

    Get PDF
    The CM-2 is an example of a connection machine. The strengths and problems of this implementation are considered as well as important issues in the architecture and programming environment of connection machines in general. These are contrasted to the same issues in Multiple Instruction/Multiple Data (MIMD) microprocessors and multicomputers

    A Generic Framework for Reasoning about Dynamic Networks of Infinite-State Processes

    Full text link
    We propose a framework for reasoning about unbounded dynamic networks of infinite-state processes. We propose Constrained Petri Nets (CPN) as generic models for these networks. They can be seen as Petri nets where tokens (representing occurrences of processes) are colored by values over some potentially infinite data domain such as integers, reals, etc. Furthermore, we define a logic, called CML (colored markings logic), for the description of CPN configurations. CML is a first-order logic over tokens allowing to reason about their locations and their colors. Both CPNs and CML are parametrized by a color logic allowing to express constraints on the colors (data) associated with tokens. We investigate the decidability of the satisfiability problem of CML and its applications in the verification of CPNs. We identify a fragment of CML for which the satisfiability problem is decidable (whenever it is the case for the underlying color logic), and which is closed under the computations of post and pre images for CPNs. These results can be used for several kinds of analysis such as invariance checking, pre-post condition reasoning, and bounded reachability analysis.Comment: 29 pages, 5 tables, 1 figure, extended version of the paper published in the the Proceedings of TACAS 2007, LNCS 442

    Massive MIMO transmission techniques

    Get PDF
    Next generation of mobile communication systems must support astounding data traffic increases, higher data rates and lower latency, among other requirements. These requirements should be met while assuring energy efficiency for mobile devices and base stations. Several technologies are being proposed for 5G, but a consensus begins to emerge. Most likely, the future core 5G technologies will include massive MIMO (Multiple Input Multiple Output) and beamforming schemes operating in the millimeter wave spectrum. As soon as the millimeter wave propagation difficulties are overcome, the full potential of massive MIMO structures can be tapped. The present work proposes a new transmission system with bi-dimensional antenna arrays working at millimeter wave frequencies, where the multiple antenna configurations can be used to obtain very high gain and directive transmission in point to point communications. A combination of beamforming with a constellation shaping scheme is proposed, that enables good user isolation and protection against eavesdropping, while simultaneously assuring power efficient amplification of multi-level constellations

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Cellular automata with limited inter-cell bandwidth

    Get PDF
    AbstractA d-dimensional cellular automaton is a d-dimensional grid of interconnected interacting finite automata. There are models with parallel and sequential input modes. In the latter case, the distinguished automaton at the origin, the communication cell, is connected to the outside world and fetches the input sequentially. Often in the literature this model is referred to as an iterative array. In this paper, d-dimensional iterative arrays and one-dimensional cellular automata are investigated which operate in real and linear time and whose inter-cell communication bandwidth is restricted to some constant number of different messages independent of the number of states. It is known that even one-dimensional two-message iterative arrays accept rather complicated languages such as {ap∣p prime} or {a2n∣n∈N} (H. Umeo, N. Kamikawa, Real-time generation of primes by a 1-bit-communication cellular automaton, Fund. Inform. 58 (2003) 421–435). Here, the computational capacity of d-dimensional iterative arrays with restricted communication is investigated and an infinite two-dimensional hierarchy with respect to dimensions and messages is shown. Furthermore, the computational capacity of the one-dimensional devices in question is compared with the power of two-way and one-way cellular automata with restricted communication. It turns out that the relations between iterative arrays and cellular automata are quite different from the relations in the unrestricted case. Additionally, an infinite strict message hierarchy for real-time two-way cellular automata is obtained as well as a very dense time hierarchy for k-message two-way cellular automata. Finally, the closure properties of one-dimensional iterative arrays with restricted communication are investigated and differences to the unrestricted case are shown as well
    • …
    corecore