41 research outputs found

    Statistical shape analysis for bio-structures : local shape modelling, techniques and applications

    Get PDF
    A Statistical Shape Model (SSM) is a statistical representation of a shape obtained from data to study variation in shapes. Work on shape modelling is constrained by many unsolved problems, for instance, difficulties in modelling local versus global variation. SSM have been successfully applied in medical image applications such as the analysis of brain anatomy. Since brain structure is so complex and varies across subjects, methods to identify morphological variability can be useful for diagnosis and treatment. The main objective of this research is to generate and develop a statistical shape model to analyse local variation in shapes. Within this particular context, this work addresses the question of what are the local elements that need to be identified for effective shape analysis. Here, the proposed method is based on a Point Distribution Model and uses a combination of other well known techniques: Fractal analysis; Markov Chain Monte Carlo methods; and the Curvature Scale Space representation for the problem of contour localisation. Similarly, Diffusion Maps are employed as a spectral shape clustering tool to identify sets of local partitions useful in the shape analysis. Additionally, a novel Hierarchical Shape Analysis method based on the Gaussian and Laplacian pyramids is explained and used to compare the featured Local Shape Model. Experimental results on a number of real contours such as animal, leaf and brain white matter outlines have been shown to demonstrate the effectiveness of the proposed model. These results show that local shape models are efficient in modelling the statistical variation of shape of biological structures. Particularly, the development of this model provides an approach to the analysis of brain images and brain morphometrics. Likewise, the model can be adapted to the problem of content based image retrieval, where global and local shape similarity needs to be measured

    Selected topics in video coding and computer vision

    Get PDF
    Video applications ranging from multimedia communication to computer vision have been extensively studied in the past decades. However, the emergence of new applications continues to raise questions that are only partially answered by existing techniques. This thesis studies three selected topics related to video: intra prediction in block-based video coding, pedestrian detection and tracking in infrared imagery, and multi-view video alignment.;In the state-of-art video coding standard H.264/AVC, intra prediction is defined on the hierarchical quad-tree based block partitioning structure which fails to exploit the geometric constraint of edges. We propose a geometry-adaptive block partitioning structure and a new intra prediction algorithm named geometry-adaptive intra prediction (GAIP). A new texture prediction algorithm named geometry-adaptive intra displacement prediction (GAIDP) is also developed by extending the original intra displacement prediction (IDP) algorithm with the geometry-adaptive block partitions. Simulations on various test sequences demonstrate that intra coding performance of H.264/AVC can be significantly improved by incorporating the proposed geometry adaptive algorithms.;In recent years, due to the decreasing cost of thermal sensors, pedestrian detection and tracking in infrared imagery has become a topic of interest for night vision and all weather surveillance applications. We propose a novel approach for detecting and tracking pedestrians in infrared imagery based on a layered representation of infrared images. Pedestrians are detected from the foreground layer by a Principle Component Analysis (PCA) based scheme using the appearance cue. To facilitate the task of pedestrian tracking, we formulate the problem of shot segmentation and present a graph matching-based tracking algorithm. Simulations with both OSU Infrared Image Database and WVU Infrared Video Database are reported to demonstrate the accuracy and robustness of our algorithms.;Multi-view video alignment is a process to facilitate the fusion of non-synchronized multi-view video sequences for various applications including automatic video based surveillance and video metrology. In this thesis, we propose an accurate multi-view video alignment algorithm that iteratively aligns two sequences in space and time. To achieve an accurate sub-frame temporal alignment, we generalize the existing phase-correlation algorithm to 3-D case. We also present a novel method to obtain the ground-truth of the temporal alignment by using supplementary audio signals sampled at a much higher rate. The accuracy of our algorithm is verified by simulations using real-world sequences

    Statistical shape analysis for bio-structures : local shape modelling, techniques and applications

    Get PDF
    A Statistical Shape Model (SSM) is a statistical representation of a shape obtained from data to study variation in shapes. Work on shape modelling is constrained by many unsolved problems, for instance, difficulties in modelling local versus global variation. SSM have been successfully applied in medical image applications such as the analysis of brain anatomy. Since brain structure is so complex and varies across subjects, methods to identify morphological variability can be useful for diagnosis and treatment. The main objective of this research is to generate and develop a statistical shape model to analyse local variation in shapes. Within this particular context, this work addresses the question of what are the local elements that need to be identified for effective shape analysis. Here, the proposed method is based on a Point Distribution Model and uses a combination of other well known techniques: Fractal analysis; Markov Chain Monte Carlo methods; and the Curvature Scale Space representation for the problem of contour localisation. Similarly, Diffusion Maps are employed as a spectral shape clustering tool to identify sets of local partitions useful in the shape analysis. Additionally, a novel Hierarchical Shape Analysis method based on the Gaussian and Laplacian pyramids is explained and used to compare the featured Local Shape Model. Experimental results on a number of real contours such as animal, leaf and brain white matter outlines have been shown to demonstrate the effectiveness of the proposed model. These results show that local shape models are efficient in modelling the statistical variation of shape of biological structures. Particularly, the development of this model provides an approach to the analysis of brain images and brain morphometrics. Likewise, the model can be adapted to the problem of content based image retrieval, where global and local shape similarity needs to be measured.EThOS - Electronic Theses Online ServiceConsejo Nacional de Ciencia y Tecnología (Mexico) (CONACYT)GBUnited Kingdo

    Relating Multimodal Imagery Data in 3D

    Get PDF
    This research develops and improves the fundamental mathematical approaches and techniques required to relate imagery and imagery derived multimodal products in 3D. Image registration, in a 2D sense, will always be limited by the 3D effects of viewing geometry on the target. Therefore, effects such as occlusion, parallax, shadowing, and terrain/building elevation can often be mitigated with even a modest amounts of 3D target modeling. Additionally, the imaged scene may appear radically different based on the sensed modality of interest; this is evident from the differences in visible, infrared, polarimetric, and radar imagery of the same site. This thesis develops a `model-centric\u27 approach to relating multimodal imagery in a 3D environment. By correctly modeling a site of interest, both geometrically and physically, it is possible to remove/mitigate some of the most difficult challenges associated with multimodal image registration. In order to accomplish this feat, the mathematical framework necessary to relate imagery to geometric models is thoroughly examined. Since geometric models may need to be generated to apply this `model-centric\u27 approach, this research develops methods to derive 3D models from imagery and LIDAR data. Of critical note, is the implementation of complimentary techniques for relating multimodal imagery that utilize the geometric model in concert with physics based modeling to simulate scene appearance under diverse imaging scenarios. Finally, the often neglected final phase of mapping localized image registration results back to the world coordinate system model for final data archival are addressed. In short, once a target site is properly modeled, both geometrically and physically, it is possible to orient the 3D model to the same viewing perspective as a captured image to enable proper registration. If done accurately, the synthetic model\u27s physical appearance can simulate the imaged modality of interest while simultaneously removing the 3-D ambiguity between the model and the captured image. Once registered, the captured image can then be archived as a texture map on the geometric site model. In this way, the 3D information that was lost when the image was acquired can be regained and properly related with other datasets for data fusion and analysis

    ROBUST BACKGROUND SUBTRACTION FOR MOVING CAMERAS AND THEIR APPLICATIONS IN EGO-VISION SYSTEMS

    Get PDF
    Background subtraction is the algorithmic process that segments out the region of interest often known as foreground from the background. Extensive literature and numerous algorithms exist in this domain, but most research have focused on videos captured by static cameras. The proliferation of portable platforms equipped with cameras has resulted in a large amount of video data being generated from moving cameras. This motivates the need for foundational algorithms for foreground/background segmentation in videos from moving cameras. In this dissertation, I propose three new types of background subtraction algorithms for moving cameras based on appearance, motion, and a combination of them. Comprehensive evaluation of the proposed approaches on publicly available test sequences show superiority of our system over state-of-the-art algorithms. The first method is an appearance-based global modeling of foreground and background. Features are extracted by sliding a fixed size window over the entire image without any spatial constraint to accommodate arbitrary camera movements. Supervised learning method is then used to build foreground and background models. This method is suitable for limited scene scenarios such as Pan-Tilt-Zoom surveillance cameras. The second method relies on motion. It comprises of an innovative background motion approximation mechanism followed by spatial regulation through a Mega-Pixel denoising process. This work does not need to maintain any costly appearance models and is therefore appropriate for resource constraint ego-vision systems. The proposed segmentation combined with skin cues is validated by a novel application on authenticating hand-gestured signature captured by wearable cameras. The third method combines both motion and appearance. Foreground probabilities are jointly estimated by motion and appearance. After the mega-pixel denoising process, the probability estimates and gradient image are combined by Graph-Cut to produce the segmentation mask. This method is universal as it can handle all types of moving cameras

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Object Recognition

    Get PDF
    Vision-based object recognition tasks are very familiar in our everyday activities, such as driving our car in the correct lane. We do these tasks effortlessly in real-time. In the last decades, with the advancement of computer technology, researchers and application developers are trying to mimic the human's capability of visually recognising. Such capability will allow machine to free human from boring or dangerous jobs

    Investigating human-perceptual properties of "shapes" using 3D shapes and 2D fonts

    Get PDF
    Shapes are generally used to convey meaning. They are used in video games, films and other multimedia, in diverse ways. 3D shapes may be destined for virtual scenes or represent objects to be constructed in the real-world. Fonts add character to an otherwise plain block of text, allowing the writer to make important points more visually prominent or distinct from other text. They can indicate the structure of a document, at a glance. Rather than studying shapes through traditional geometric shape descriptors, we provide alternative methods to describe and analyse shapes, from a lens of human perception. This is done via the concepts of Schelling Points and Image Specificity. Schelling Points are choices people make when they aim to match with what they expect others to choose but cannot communicate with others to determine an answer. We study whole mesh selections in this setting, where Schelling Meshes are the most frequently selected shapes. The key idea behind image Specificity is that different images evoke different descriptions; but ‘Specific’ images yield more consistent descriptions than others. We apply Specificity to 2D fonts. We show that each concept can be learned and predict them for fonts and 3D shapes, respectively, using a depth image-based convolutional neural network. Results are shown for a range of fonts and 3D shapes and we demonstrate that font Specificity and the Schelling meshes concept are useful for visualisation, clustering, and search applications. Overall, we find that each concept represents similarities between their respective type of shape, even when there are discontinuities between the shape geometries themselves. The ‘context’ of these similarities is in some kind of abstract or subjective meaning which is consistent among different people
    corecore