6,859 research outputs found

    Combinatorial models of expanding dynamical systems

    Full text link
    We define iterated monodromy groups of more general structures than partial self-covering. This generalization makes it possible to define a natural notion of a combinatorial model of an expanding dynamical system. We prove that a naturally defined "Julia set" of the generalized dynamical systems depends only on the associated iterated monodromy group. We show then that the Julia set of every expanding dynamical system is an inverse limit of simplicial complexes constructed by inductive cut-and-paste rules.Comment: The new version differs substantially from the first one. Many parts are moved to other (mostly future) papers, the main open question of the first version is solve

    Celulární automat a CML systémy

    Get PDF
    The main aim of this thesis is the study of cellular automata and discrete dynamical systems on a lattice. Both tools, cellular automata as well as dynamical systems on a lattice are introduced and elementary properties described. The relation between cellular automata and dynamical system on lattice is derived. The main goal of the thesis is also the use of the cellular automata as that mathematical tool of evolution visualization of discrete dynamical systems. The theory of cellular automata is applied to the discrete dynamical systems on a lattice Laplacian type and implemented in Java language.Hlavním cílem práce je studium vztahu celulárních automatů a diskrétních dynamických systémů na mřížce. Oba nástroje, jak celulární automat tak dynamický systém na mřížce, jsou zavedeny a jejich základní vlastnosti popsány. Vztah mezi celulárními automaty a dynamickými systémy na mřížce je podrobně popsán. Hlavním cílem práce je dále použití nástroje celulárního automatu jako matematického vizualizačního prostředku evoluce diskrétních dynamických systémů. Teorie celulárních automatů je použita na dynamické systémy na mřížce Lamplaceova typu a implementována v prostředí Java.470 - Katedra aplikované matematikyvelmi dobř

    Symbolic Algorithms for Language Equivalence and Kleene Algebra with Tests

    Get PDF
    We first propose algorithms for checking language equivalence of finite automata over a large alphabet. We use symbolic automata, where the transition function is compactly represented using a (multi-terminal) binary decision diagrams (BDD). The key idea consists in computing a bisimulation by exploring reachable pairs symbolically, so as to avoid redundancies. This idea can be combined with already existing optimisations, and we show in particular a nice integration with the disjoint sets forest data-structure from Hopcroft and Karp's standard algorithm. Then we consider Kleene algebra with tests (KAT), an algebraic theory that can be used for verification in various domains ranging from compiler optimisation to network programming analysis. This theory is decidable by reduction to language equivalence of automata on guarded strings, a particular kind of automata that have exponentially large alphabets. We propose several methods allowing to construct symbolic automata out of KAT expressions, based either on Brzozowski's derivatives or standard automata constructions. All in all, this results in efficient algorithms for deciding equivalence of KAT expressions

    Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

    Get PDF
    The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative generalization of Segala and Lynch's probabilistic bisimilarity for probabilistic automata. In this paper, we present a characterization of the bisimilarity distance as the solution of a simple stochastic game. The characterization gives us an algorithm to compute the distances by applying Condon's simple policy iteration on these games. The correctness of Condon's approach, however, relies on the assumption that the games are stopping. Our games may be non-stopping in general, yet we are able to prove termination for this extended class of games. Already other algorithms have been proposed in the literature to compute these distances, with complexity in UPcoUP\textbf{UP} \cap \textbf{coUP} and \textbf{PPAD}. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of our knowledge, our algorithm is the first practical solution. The characterization of the probabilistic bisimilarity distance mentioned above crucially uses a dual presentation of the Hausdorff distance due to M\'emoli. As an additional contribution, in this paper we show that M\'emoli's result can be used also to prove that the bisimilarity distance bounds the difference in the maximal (or minimal) probability of two states to satisfying arbitrary ω\omega-regular properties, expressed, eg., as LTL formulas
    corecore