1,682 research outputs found

    Iteration Complexity of Randomized Block-Coordinate Descent Methods for Minimizing a Composite Function

    Full text link
    In this paper we develop a randomized block-coordinate descent method for minimizing the sum of a smooth and a simple nonsmooth block-separable convex function and prove that it obtains an ϵ\epsilon-accurate solution with probability at least 1ρ1-\rho in at most O(nϵlog1ρ)O(\tfrac{n}{\epsilon} \log \tfrac{1}{\rho}) iterations, where nn is the number of blocks. For strongly convex functions the method converges linearly. This extends recent results of Nesterov [Efficiency of coordinate descent methods on huge-scale optimization problems, CORE Discussion Paper #2010/2], which cover the smooth case, to composite minimization, while at the same time improving the complexity by the factor of 4 and removing ϵ\epsilon from the logarithmic term. More importantly, in contrast with the aforementioned work in which the author achieves the results by applying the method to a regularized version of the objective function with an unknown scaling factor, we show that this is not necessary, thus achieving true iteration complexity bounds. In the smooth case we also allow for arbitrary probability vectors and non-Euclidean norms. Finally, we demonstrate numerically that the algorithm is able to solve huge-scale 1\ell_1-regularized least squares and support vector machine problems with a billion variables.Comment: 33 pages, 7 figures, 10 table

    Parallel Successive Convex Approximation for Nonsmooth Nonconvex Optimization

    Get PDF
    Consider the problem of minimizing the sum of a smooth (possibly non-convex) and a convex (possibly nonsmooth) function involving a large number of variables. A popular approach to solve this problem is the block coordinate descent (BCD) method whereby at each iteration only one variable block is updated while the remaining variables are held fixed. With the recent advances in the developments of the multi-core parallel processing technology, it is desirable to parallelize the BCD method by allowing multiple blocks to be updated simultaneously at each iteration of the algorithm. In this work, we propose an inexact parallel BCD approach where at each iteration, a subset of the variables is updated in parallel by minimizing convex approximations of the original objective function. We investigate the convergence of this parallel BCD method for both randomized and cyclic variable selection rules. We analyze the asymptotic and non-asymptotic convergence behavior of the algorithm for both convex and non-convex objective functions. The numerical experiments suggest that for a special case of Lasso minimization problem, the cyclic block selection rule can outperform the randomized rule

    An Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization

    Get PDF
    We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. For strongly convex functions, our method achieves faster linear convergence rates than existing randomized proximal coordinate gradient methods. Without strong convexity, our method enjoys accelerated sublinear convergence rates. We show how to apply the APCG method to solve the regularized empirical risk minimization (ERM) problem, and devise efficient implementations that avoid full-dimensional vector operations. For ill-conditioned ERM problems, our method obtains improved convergence rates than the state-of-the-art stochastic dual coordinate ascent (SDCA) method

    Robust Block Coordinate Descent

    Full text link
    In this paper we present a novel randomized block coordinate descent method for the minimization of a convex composite objective function. The method uses (approximate) partial second-order (curvature) information, so that the algorithm performance is more robust when applied to highly nonseparable or ill conditioned problems. We call the method Robust Coordinate Descent (RCD). At each iteration of RCD, a block of coordinates is sampled randomly, a quadratic model is formed about that block and the model is minimized approximately/inexactly to determine the search direction. An inexpensive line search is then employed to ensure a monotonic decrease in the objective function and acceptance of large step sizes. We prove global convergence of the RCD algorithm, and we also present several results on the local convergence of RCD for strongly convex functions. Finally, we present numerical results on large-scale problems to demonstrate the practical performance of the method.Comment: 23 pages, 6 figure
    corecore