9,457 research outputs found

    Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization

    Full text link
    Nonconvex optimization is central in solving many machine learning problems, in which block-wise structure is commonly encountered. In this work, we propose cyclic block coordinate methods for nonconvex optimization problems with non-asymptotic gradient norm guarantees. Our convergence analysis is based on a gradient Lipschitz condition with respect to a Mahalanobis norm, inspired by a recent progress on cyclic block coordinate methods. In deterministic settings, our convergence guarantee matches the guarantee of (full-gradient) gradient descent, but with the gradient Lipschitz constant being defined w.r.t.~the Mahalanobis norm. In stochastic settings, we use recursive variance reduction to decrease the per-iteration cost and match the arithmetic operation complexity of current optimal stochastic full-gradient methods, with a unified analysis for both finite-sum and infinite-sum cases. We further prove the faster, linear convergence of our methods when a Polyak-{\L}ojasiewicz (P{\L}) condition holds for the objective function. To the best of our knowledge, our work is the first to provide variance-reduced convergence guarantees for a cyclic block coordinate method. Our experimental results demonstrate the efficacy of the proposed variance-reduced cyclic scheme in training deep neural nets

    Nonnegative factorization and the maximum edge biclique problem

    Get PDF
    Nonnegative matrix factorization (NMF) is a data analysis technique based on the approximation of a nonnegative matrix with a product of two nonnegative factors, which allows compression and interpretation of nonnegative data. In this paper, we study the case of rank-one factorization and show that when the matrix to be factored is not required to be nonnegative, the corresponding problem (R1NF) becomes NP-hard. This sheds new light on the complexity of NMF since any algorithm for fixed-rank NMF must be able to solve at least implicitly such rank-one subproblems. Our proof relies on a reduction of the maximum edge biclique problem to R1NF. We also link stationary points of R1NF to feasible solutions of the biclique problem, which allows us to design a new type of biclique finding algorithm based on the application of a block-coordinate descent scheme to R1NF. We show that this algorithm, whose algorithmic complexity per iteration is proportional to the number of edges in the graph, is guaranteed to converge to a biclique and that it performs competitively with existing methods on random graphs and text mining datasets.nonnegative matrix factorization, rank-one factorization, maximum edge biclique problem, algorithmic complexity, biclique finding algorithm
    corecore