5 research outputs found

    The External Tape Hypothesis: a Turing machine based approach to cognitive computation

    Get PDF
    The symbol processing or "classical cognitivist" approach to mental computation suggests that the cognitive architecture operates rather like a digital computer. The components of the architecture are input, output and central systems. The input and output systems communicate with both the internal and external environments of the cognizer and transmit codes to and from the rule governed, central processing system which operates on structured representational expressions in the internal environment. The connectionist approach, by contrast, suggests that the cognitive architecture should be thought of as a network of interconnected neuron-like processing elements (nodes) which operates rather like a brain. Connectionism distinguishes input, output and central or "hidden" layers of nodes. Connectionists claim that internal processing consists not of the rule governed manipulation of structured symbolic expressions, but of the excitation and inhibition of activity and the alteration of connection strengths via message passing within and between layers of nodes in the network. A central claim of the thesis is that neither symbol processing nor connectionism provides an adequate characterization of the role of the external environment in cognitive computation. An alternative approach, called the External Tape Hypothesis (ETH), is developed which claims, on the basis of Turing's analysis of routine computation, that the Turing machine model can be used as the basis for a theory which includes the environment as an essential part of the cognitive architecture. The environment is thought of as the tape, and the brain as the control of a Turing machine. Finite state automata, Turing machines, and universal Turing machines are described, including details of Turing's original universal machine construction. A short account of relevant aspects of the history of digital computation is followed by a critique of the symbol processing approach as it is construed by influential proponents such as Allen Newell and Zenon Pylyshyn among others. The External Tape Hypothesis is then developed as an alternative theoretical basis. In the final chapter, the ETH is combined with the notion of a self-describing Turing machine to provide the basis for an account of thinking and the development of internal representations

    Acta Cybernetica : Volume 18. Number 1.

    Get PDF

    The deep space network, volume 7

    Get PDF
    The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Space Flight Operations Facility are described

    Transformation of Multidirectional Sea Field and Computational Study

    Get PDF
    A computational model based on the evolution equation for water waves (Li, 1994b) derived from the original Berkhoffs (1972) "Mild Slope Equation" is tested against multidirectional sea data. The model accounts for reflection as well as diffraction-refraction processes, which is important for applications involving coastal structures. The accuracy and convergence of the numerical solution, as well as the possibility of the implementation of an adaptive numerical scheme are investigated and implemented. The model was firstly tested using laboratory measurements (Briggs et al, 1995) of random directional wave diffraction around a semi-infinite breakwater on a flat bottom. These tests confirm the need to use "directional modelling" (using the principle of linear superposition) for the prediction of wave heights behind the breakwater. The model was then tested using directional wave data records, which were chosen from 4500 wave records collected in the field campaign, by the University of Plymouth and the University of Brighton, at Elmer - Sussex, UK from September 1993 - January 1995. The results showed that the representation of the measured random sea by monochromatic wave runs can introduce a significant error in wave height predictions shoreward of the breakwaters in the diffraction region, thus confirming the importance of directional modelling for random wave simulation. Evidence strongly suggests that non-linear wave effects have a significant influence (40-60%) on the accuracy of the model. Consequently, further tests are needed, which should also consider the influence of wave-current interaction, wave breaking, bed fiiction and transmissive boundaries. Over all the model predictions are more accurate for the controlled environment in the laboratory (5-13%), than for field conditions where the directional modelling accuracy varied from 8 - 32%. A summary of the data, collected by the author as a member of the University of Plymouth Research Team and a database of spectral and directional parameters is also presented in this thesis. Field validation of the numerical model required accurate estimates of measured data. Emphasis was placed on identifying a suitable directional analysis method, which accurately predicted direction and directional spread in the far-field from structures where reflection is still present. The non-phase-locked (hfPL) methods developed for a homogeneous sea are found to be appropriate. The anzdysis of two NPL methods, the Maximum Likelihood Method (MLM) and Bayesian Directional Method (BDM), directional estimates for simulated data shows that both methods can predict accurate incident wave height and direction. Both methods tend to overpredict directional spread and give non-accurate reflection estimates. The MLM method is easier to implement than the BDM method, which is sensitive to the chosen starting value of the hyperparameter u. As the difference between estimates of the two methods for numerical data is small, the MLM method's estimates were chosen for model testing
    corecore