18 research outputs found

    Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimize total tardiness

    Get PDF
    The permutation flow shop scheduling problem is one of the most studied operations research related problems. Literally, hundreds of exact and approximate algorithms have been proposed to optimise several objective functions. In this paper we address the total tardiness criterion, which is aimed towards the satisfaction of customers in a make-to-order scenario. Although several approximate algorithms have been proposed for this problem in the literature, recent contributions for related problems suggest that there is room for improving the current available algorithms. Thus, our contribution is twofold: First, we propose a fast beam-search-based constructive heuristic that estimates the quality of partial sequences without a complete evaluation of their objective function. Second, using this constructive heuristic as initial solution, eight variations of an iterated-greedy-based algorithm are proposed. A comprehensive computational evaluation is performed to establish the efficiency of our proposals against the existing heuristics and metaheuristics for the problem.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-

    New efficient constructive heuristics for the hybrid flowshop to minimise makespan: A computational evaluation of heuristics

    Get PDF
    This paper addresses the hybrid flow shop scheduling problem to minimise makespan, a well-known scheduling problem for which many constructive heuristics have been proposed in the literature. Nevertheless, the state of the art is not clear due to partial or non homogeneous comparisons. In this paper, we review these heuristics and perform a comprehensive computational evaluation to determine which are the most efficient ones. A total of 20 heuristics are implemented and compared in this study. In addition, we propose four new heuristics for the problem. Firstly, two memory-based constructive heuristics are proposed, where a sequence is constructed by inserting jobs one by one in a partial sequence. The most promising insertions tested are kept in a list. However, in contrast to the Tabu search, these insertions are repeated in future iterations instead of forbidding them. Secondly, we propose two constructive heuristics based on Johnson’s algorithm for the permutation flowshop scheduling problem. The computational results carried out on an extensive testbed show that the new proposals outperform the existing heuristics.Ministerio de Ciencia e Innovación DPI2016-80750-

    A speed-up procedure for the hybrid flow shop scheduling problem

    Get PDF
    Article number 115903During the last decades, hundreds of approximate algorithms have been proposed in the literature addressing flow-shop-based scheduling problems. In the race for finding the best proposals to solve these problems, speedup procedures to compute objective functions represent a key factor in the efficiency of the algorithms. This is the case of the well-known Taillard’s accelerations proposed for the traditional flow shop with makespan minimisation or several other accelerations proposed for related scheduling problems. Despite the interest in proposing such methods to improve the efficiency of approximate algorithms, to the best of our knowledge, no speed-up procedure has been proposed so far in the hybrid flow shop literature. To tackle this challenge, we propose in this paper a speed-up procedure for makespan minimisation, which can be incorporate in insertion-based neighbourhoods using a complete representation of the solutions. This procedure is embedded in the traditional iterated greedy algorithm. The computational experience shows that even incorporating the proposed speed-up procedure in this simple metaheuristic results in outperforming the best metaheuristic for the problem under consideration.Junta de Andalucía(España) US-1264511Ministerio de Ciencia e Innovación (España) PID2019-108756RB-I0

    A critical-path based iterated local search for the green permutation flowshop problem

    Get PDF
    The permutation flowshop scheduling problem is a widely studied combinatorial optimization problem with several real-world applications. In this paper we address a green variant of the problem with controllable processing times and two objective functions: one related to the service level of the factory (makespan) and another one related to the total cost or the total energy/carbon consumption. For this problem we propose a novel Critical-Path based Iterated Local Search. This metaheuristic incorporates several theoretical results to accelerate the search of solutions in the intensification phase. The proposed algorithm has been compared on an extensive benchmark with the most promising algorithms in the literature. The computational results show the excellent performance of the proposal.Ministerio de Ciencia e Innovación PID2019-108756RB-I00Junta de Andalucía US-126451

    Exploring the benefits of scheduling with advanced and real-time information integration in Industry 4.0: A computational study

    Get PDF
    The technological advances recently brought to the manufacturing arena (collectively known as Industry 4.0) offer huge possibilities to improve decision-making processes in the shop floor by enabling the integration of information in real-time. Among these processes, scheduling is often cited as one of the main beneficiaries, given its data-intensive and dynamic nature. However, in view of the extremely high implementation costs of Industry 4.0, these potential benefits should be properly assessed, also taking into account that there are different approaches and solution procedures that can be employed in the scheduling decision-making process, as well as several information sources (i.e. not only shop floor status data, but also data from upstream/downstream processes). In this paper, we model various decision-making scenarios in a shop floor with different degrees of uncertainty and diverse efficiency measures, and carry out a computational experience to assess how real-time and advance information can be advantageously integrated in the Industry 4.0 context. The extensive computational experiments (equivalent to 6.3 years of CPU time) show that the benefits of using real-time, integrated shop floor data and advance information heavily depend on the proper choice of both the scheduling approach and the solution procedures, and that there are scenarios where this usage is even counterproductive. The results of the paper provide some starting points for future research regarding the design of approaches and solution procedures that allow fully exploiting the technological advances of Industry 4.0 for decision-making in scheduling.Ministerio de Ciencia e Innovación PID2019-108756RB-I0Junta de Andalucía P18-FR-1149, 5835 and US-12645

    Tailored Iterated Greedy metaheuristic for a scheduling problem in metal 3D printing

    Get PDF
    This article contributes to the additive manufacturing-based production planning literature by developing a Mixed-Integer Linear Programming (MILP) formulation for the Identical Parallel 3D-Printing Machines Scheduling Problem considering batching, multiple build platforms of restricted sizes, and sequence-independent setup times. Besides, a customized metaheuristic, named the Tailored Iterated Greedy (TIG) Algorithm is developed to solve the new optimization problem. TIG’s performance is evaluated through extensive numerical analysis and using a new testbed. It is shown that the customized computational mechanisms improve the optimization performance; statistical analysis is supportive of the significance of the resulting improvements. The developed mathematical model and optimization algorithm can be considered the basis for future developments in the optimization literature of additive manufacturing

    Theoretical and Computational Research in Various Scheduling Models

    Get PDF
    Nine manuscripts were published in this Special Issue on “Theoretical and Computational Research in Various Scheduling Models, 2021” of the MDPI Mathematics journal, covering a wide range of topics connected to the theory and applications of various scheduling models and their extensions/generalizations. These topics include a road network maintenance project, cost reduction of the subcontracted resources, a variant of the relocation problem, a network of activities with generally distributed durations through a Markov chain, idea on how to improve the return loading rate problem by integrating the sub-tour reversal approach with the method of the theory of constraints, an extended solution method for optimizing the bi-objective no-idle permutation flowshop scheduling problem, the burn-in (B/I) procedure, the Pareto-scheduling problem with two competing agents, and three preemptive Pareto-scheduling problems with two competing agents, among others. We hope that the book will be of interest to those working in the area of various scheduling problems and provide a bridge to facilitate the interaction between researchers and practitioners in scheduling questions. Although discrete mathematics is a common method to solve scheduling problems, the further development of this method is limited due to the lack of general principles, which poses a major challenge in this research field

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Move acceptance in local search metaheuristics for cross-domain search

    Get PDF
    Metaheuristics provide high-level instructions for designing heuristic optimisation algorithms and have been successfully applied to a range of computationally hard real-world problems. Local search metaheuristics operate under a single-point based search framework with the goal of iteratively improving a solution in hand over time with respect to a single objective using certain solution perturbation strategies, known as move operators, and move acceptance methods starting from an initially generated solution. Performance of a local search method varies from one domain to another, even from one instance to another in the same domain. There is a growing number of studies on `more general' search methods referred to as cross-domain search methods, or hyperheuristics, that operate at a high-level solving characteristically different problems, preferably without expert intervention. This paper provides a taxonomy and overview of existing local search metaheuristics along with an empirical study into the effects that move acceptance methods, as components of singlepoint based local search metaheuristics, have on the cross-domain performance of such algorithms for solving multiple combinatorial optimisation problems. The experimental results across a benchmark of nine different computationally hard problems highlight the shortcomings of existing and well-known methods for use as components of cross-domain search methods, despite being re-tuned for solving each domain
    corecore