67 research outputs found

    Iterated responsive threshold search for the quadratic multiple knapsack problem

    Get PDF
    The quadratic multiple knapsack problem (QMKP) consists in assigning objects with both individual and pairwise profits to a set of limited knapsacks in order to maximize the total profit. QMKP is a NP-hard combinatorial optimization problem with a number of applications. In this paper, we present an iterated responsive threshold search (IRTS) approach for solving the QMKP. Based on a combined use of three neighborhoods, the algorithm alternates between a threshold-based exploration phase where solution transitions are allowed among those satisfying a responsive threshold and a descent-based improvement phase where only improving solutions are accepted. A dedicated perturbation strategy is utilized to ensure a global diversification of the search procedure. Extensive experiments performed on a set of 60 benchmark instances in the literature show that the proposed approach competes very favorably with the current state-of-the-art methods for the QMKP. In particular, it discovers 41 improved lower bounds and attains all the best known results for the remaining instances. The key components of IRTS are analyzed to shed light on their impact on the performance of the algorithm

    A lagrangian relaxation-based heuristic to solve large extended graph partitioning problems

    Full text link
    © Springer International Publishing Switzerland 2016. The paper is concerned with the planning of training sessions in large organisations requiring periodic retraining of their staff. The allocation of students must take into account student preferences as well as the desired composition of study groups. The paper presents a bicriteria Quadratic Multiple Knapsack formulation of the considered practical problem, and a novel solution procedure based on Lagrangian relaxation. The paper presents the results of computational experiments aimed at testing the optimisation procedure on real world data originating from Australia’s largest electricity distributor. Results are compared and validated against a Genetic Algorithm based matheuristic

    Ant colony meta-heuristics - Schemes and software framework

    Get PDF
    Master'sMASTER OF SCIENC

    Applied (Meta)-Heuristic in Intelligent Systems

    Get PDF
    Engineering and business problems are becoming increasingly difficult to solve due to the new economics triggered by big data, artificial intelligence, and the internet of things. Exact algorithms and heuristics are insufficient for solving such large and unstructured problems; instead, metaheuristic algorithms have emerged as the prevailing methods. A generic metaheuristic framework guides the course of search trajectories beyond local optimality, thus overcoming the limitations of traditional computation methods. The application of modern metaheuristics ranges from unmanned aerial and ground surface vehicles, unmanned factories, resource-constrained production, and humanoids to green logistics, renewable energy, circular economy, agricultural technology, environmental protection, finance technology, and the entertainment industry. This Special Issue presents high-quality papers proposing modern metaheuristics in intelligent systems

    Electronic commerce logistics and the knapsack problem

    Get PDF
    The research object of this dissertation has been e-commerce and the knapsack problem from the perspective of logistics and controlling and consists of two parts, each of which contains two papers. In the first part, through analysis of and research on two specific issues, this dissertation has contributed mainly to the interpretation of the relationship between logistics and e-commerce. The second part of this dissertation provides for companies a free, efficient and easy-to-use optimization software for solving knapsack problems and based on genetic algorithms

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Incorporating Memory and Learning Mechanisms Into Meta-RaPS

    Get PDF
    Due to the rapid increase of dimensions and complexity of real life problems, it has become more difficult to find optimal solutions using only exact mathematical methods. The need to find near-optimal solutions in an acceptable amount of time is a challenge when developing more sophisticated approaches. A proper answer to this challenge can be through the implementation of metaheuristic approaches. However, a more powerful answer might be reached by incorporating intelligence into metaheuristics. Meta-RaPS (Metaheuristic for Randomized Priority Search) is a metaheuristic that creates high quality solutions for discrete optimization problems. It is proposed that incorporating memory and learning mechanisms into Meta-RaPS, which is currently classified as a memoryless metaheuristic, can help the algorithm produce higher quality results. The proposed Meta-RaPS versions were created by taking different perspectives of learning. The first approach taken is Estimation of Distribution Algorithms (EDA), a stochastic learning technique that creates a probability distribution for each decision variable to generate new solutions. The second Meta-RaPS version was developed by utilizing a machine learning algorithm, Q Learning, which has been successfully applied to optimization problems whose output is a sequence of actions. In the third Meta-RaPS version, Path Relinking (PR) was implemented as a post-optimization method in which the new algorithm learns the good attributes by memorizing best solutions, and follows them to reach better solutions. The fourth proposed version of Meta-RaPS presented another form of learning with its ability to adaptively tune parameters. The efficiency of these approaches motivated us to redesign Meta-RaPS by removing the improvement phase and adding a more sophisticated Path Relinking method. The new Meta-RaPS could solve even the largest problems in much less time while keeping up the quality of its solutions. To evaluate their performance, all introduced versions were tested using the 0-1 Multidimensional Knapsack Problem (MKP). After comparing the proposed algorithms, Meta-RaPS PR and Meta-RaPS Q Learning appeared to be the algorithms with the best and worst performance, respectively. On the other hand, they could all show superior performance than other approaches to the 0-1 MKP in the literature
    corecore